In
mathematics, the discrete exterior calculus (DEC) is the extension of the
exterior calculus to
discrete
Discrete may refer to:
*Discrete particle or quantum in physics, for example in quantum theory
*Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit
*Discrete group, a ...
spaces including
graphs and
finite element meshes. DEC methods have proved to be very powerful in improving and analyzing finite element methods: for instance, DEC-based methods allow the use of highly non-uniform meshes to obtain accurate results. Non-uniform meshes are advantageous because they allow the use of large elements where the process to be simulated is relatively simple, as opposed to a fine resolution where the process may be complicated (e.g., near an obstruction to a fluid flow), while using less computational power than if a uniformly fine mesh were used.
The discrete exterior derivative
Stokes' theorem
Stokes's theorem, also known as the Kelvin–Stokes theorem Nagayoshi Iwahori, et al.:"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12Written in Japanese)Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" :ja:培風館, Bai-Fu-Kan( ...
relates the
integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
of a
differential (''n'' − 1)-form ''ω'' over the
boundary ∂''M'' of an ''n''-
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al manifold ''M'' to the integral of d''ω'' (the
exterior derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
of ''ω'', and a differential ''n''-form on ''M'') over ''M'' itself:
:
One could think of differential ''k''-forms as
linear operators that act on ''k''-dimensional "bits" of space, in which case one might prefer to use the
bra–ket notation
In quantum mechanics, bra–ket notation, or Dirac notation, is used ubiquitously to denote quantum states. The notation uses angle brackets, and , and a vertical bar , to construct "bras" and "kets".
A ket is of the form , v \rangle. Mathem ...
for a dual pairing. In this notation, Stokes' theorem reads as
:
In finite element analysis, the first stage is often the approximation of the domain of interest by a
triangulation
In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points.
Applications
In surveying
Specifically in surveying, triangulation involves only angle ...
, ''T''. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments, which themselves terminate in points. Topologists would refer to such a construction as a
simplicial complex
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial ...
. The boundary operator on this triangulation/simplicial complex ''T'' is defined in the usual way: for example, if ''L'' is a directed line segment from one point, ''a'', to another, ''b'', then the boundary ∂''L'' of ''L'' is the formal difference ''b'' − ''a''.
A ''k''-form on ''T'' is a linear operator acting on ''k''-dimensional subcomplexes of ''T''; e.g., a 0-form assigns values to points, and extends linearly to linear combinations of points; a 1-form assigns values to line segments in a similarly linear way. If ''ω'' is a ''k''-form on ''T'', then the discrete exterior derivative d''ω'' of ''ω'' is the unique (''k'' + 1)-form defined so that Stokes' theorem holds:
:
For every (''k'' + 1)-dimensional subcomplex of ''T'', ''S''. Other concepts such as the discrete
wedge product
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by convert ...
and the discrete
Hodge star can also be defined.
See also
*
Discrete differential geometry
Discrete differential geometry is the study of discrete counterparts of notions in differential geometry. Instead of smooth curves and surfaces, there are polygons, meshes, and simplicial complexes. It is used in the study of computer graphics, ...
*
Discrete Morse theory Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, homology co ...
*
Topological combinatorics The mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics.
History
The discipline of combinatorial topology used combinatorial concepts in to ...
*
Discrete calculus
References
Discrete Calculus Grady, Leo J., Polimeni, Jonathan R., 2010
Hirani Thesis on Discrete Exterior CalculusConvergence of discrete exterior calculus approximations for Poisson problems E. Schulz & G. Tsogtgerel, Disc. Comp. Geo. 63(2), 346 - 376, 2020
On geometric discretization of elasticity Arash Yavari, J. Math. Phys. 49, 022901 (2008), DOI:10.1063/1.2830977
Discrete Differential Geometry: An Applied Introduction Keenan Crane, 2018
Finite element method
Multilinear algebra