HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, and particularly in
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that the two fundamental forces of nature known at the time, namely g ...
, Dirichlet's principle is the assumption that the minimizer of a certain
energy functional Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
is a solution to
Poisson's equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
.


Formal statement

Dirichlet's principle states that, if the function u ( x ) is the solution to
Poisson's equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
:\Delta u + f = 0 on a domain \Omega of \mathbb^n with
boundary condition In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
:u=g on the boundary \partial\Omega, then ''u'' can be obtained as the minimizer of the Dirichlet energy :E (x)= \int_\Omega \left(\frac, \nabla v, ^2 - vf\right)\,\mathrmx amongst all twice differentiable functions v such that v=g on \partial\Omega (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician
Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory o ...
.


History

The name "Dirichlet's principle" is due to
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
, who applied it in the study of complex analytic functions. Riemann (and others such as
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
and
Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory o ...
) knew that Dirichlet's integral is bounded below, which establishes the existence of an
infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
; however, he took for granted the existence of a function that attains the minimum.
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional :J(\varphi) = \int_^ \left( x \frac \right)^2 \, dx where \varphi is continuous on 1,1/math>, continuously differentiable on (-1,1), and subject to boundary conditions \varphi(-1)=a, \varphi(1)=b where a and b are constants and a \ne b. Weierstrass showed that \textstyle \inf_\varphi J(\varphi) = 0, but no admissible function \varphi can make J(\varphi) equal 0. This example did not disprove Dirichlet's principle ''per se'', since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
and ultimately
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
. In 1900,
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
later justified Riemann's use of Dirichlet's principle by developing the direct method in the calculus of variations.Monna 1975, p. 55–56, citing


See also

*
Dirichlet problem In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved ...
*
Hilbert's twentieth problem Hilbert's twentieth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It asks whether all boundary value problems can be solved (that is, do variational problems with certain boundary condi ...
*
Plateau's problem In mathematics, Plateau's problem is to show the existence of a minimal surface with a given boundary, a problem raised by Joseph-Louis Lagrange in 1760. However, it is named after Joseph Plateau who experimented with soap films. The problem ...
*
Green's first identity In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's t ...


Notes


References

* * * * * {{MathWorld , urlname=DirichletsPrinciple , title=Dirichlet's Principle Calculus of variations Partial differential equations Harmonic functions Mathematical principles