Dirichlet Eigenvalue
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Dirichlet eigenvalues are the
fundamental mode A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. ...
s of
vibration Vibration () is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the os ...
of an idealized drum with a given shape. The problem of whether one can hear the shape of a drum is: given the Dirichlet eigenvalues, what features of the shape of the drum can one deduce. Here a "drum" is thought of as an elastic membrane Ω, which is represented as a planar domain whose boundary is fixed. The Dirichlet eigenvalues are found by solving the following problem for an unknown function ''u'' ≠ 0 and
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
λ Here Δ is the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
, which is given in ''xy''-coordinates by :\Delta u = \frac + \frac. The
boundary value problem In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
() is the
Dirichlet problem In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved ...
for the
Helmholtz equation In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation: \nabla^2 f = -k^2 f, where is the Laplace operator, is the eigenvalue, and is the (eigen)fun ...
, and so λ is known as a Dirichlet eigenvalue for Ω. Dirichlet eigenvalues are contrasted with Neumann eigenvalues: eigenvalues for the corresponding
Neumann problem In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative appli ...
. The Laplace operator Δ appearing in () is often known as the Dirichlet Laplacian when it is considered as accepting only functions ''u'' satisfying the Dirichlet boundary condition. More generally, in
spectral geometry Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifo ...
one considers () on a
manifold with boundary In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
Ω. Then Δ is taken to be the
Laplace–Beltrami operator In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named aft ...
, also with Dirichlet boundary conditions. It can be shown, using the spectral theorem for compact self-adjoint operators that the eigenspaces are finite-dimensional and that the Dirichlet eigenvalues λ are real, positive, and have no
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A ...
. Thus they can be arranged in increasing order: :0<\lambda_1\le\lambda_2\le\cdots,\quad \lambda_n\to\infty, where each eigenvalue is counted according to its geometric multiplicity. The eigenspaces are orthogonal in the space of
square-integrable function In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
s, and consist of
smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
s. In fact, the Dirichlet Laplacian has a continuous extension to an operator from the
Sobolev space In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
H^2_0(\Omega) into L^2(\Omega). This operator is invertible, and its inverse is compact and self-adjoint so that the usual spectral theorem can be applied to obtain the eigenspaces of Δ and the reciprocals 1/λ of its eigenvalues. One of the primary tools in the study of the Dirichlet eigenvalues is the max-min principle: the first eigenvalue λ1 minimizes the Dirichlet energy. To wit, :\lambda_1 = \inf_\frac, the
infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
is taken over all ''u'' of
compact support In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed ...
that do not vanish identically in Ω. By a density argument, this infimum agrees with that taken over nonzero u\in H_0^1(\Omega). Moreover, using results from the
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
analogous to the Lax–Milgram theorem, one can show that a minimizer exists in H_0^1(\Omega). More generally, one has :\lambda_k = \sup\inf \frac where the
supremum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
is taken over all (''k''−1)-tuples \phi_1,\dots,\phi_\in H^1_0(\Omega) and the infimum over all ''u'' orthogonal to the \phi_i.


Applications

The Dirichlet Laplacian may arise from various problems of
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
; it may refer to modes of at idealized drum, small waves at the surface of an idealized pool, as well as to a mode of an idealized
optical fiber An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
in the
paraxial approximation In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens). A paraxial ray is a ray that makes a small angle (''θ'') to the optica ...
. The last application is most practical in connection to the
double-clad fiber Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the ''core''. It is surrounded by the ''inner cladding'', which is surr ...
s; in such fibers, it is important, that most of modes of the fill the domain uniformly, or the most of rays cross the core. The poorest shape seems to be the circularly-symmetric domain ,. The modes of pump should not avoid the active core used in double-clad fiber amplifiers. The spiral-shaped domain happens to be especially efficient for such an application due to the boundary behavior of modes of Dirichlet laplacian. The theorem about boundary behavior of the Dirichlet Laplacian if analogy of the property of rays in geometrical optics (Fig.1); the angular momentum of a ray (green) increases at each reflection from the spiral part of the boundary (blue), until the ray hits the chunk (red); all rays (except those parallel to the optical axis) unavoidly visit the region in vicinity of the chunk to frop the excess of the angular momentum. Similarly, all the modes of the Dirichlet Laplacian have non-zero values in vicinity of the chunk. The normal component of the derivative of the mode at the boundary can be interpreted as
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
; the pressure integrated over the surface gives the
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
. As the mode is steady-state solution of the propagation equation (with trivial dependence of the longitudinal coordinate), the total force should be zero. Similarly, the
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
of the force of pressure should be also zero. However, there exists a formal proof, which does not refer to the analogy with the physical system.


See also

* Rayleigh–Faber–Krahn inequality


Notes


References

* * . * . {{DEFAULTSORT:Dirichlet Eigenvalue Differential operators Partial differential equations Spectral theory