HOME

TheInfoList



OR:

The direct sum is an operation between
structures A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
in
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add
ordered pairs In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is
real coordinate space In mathematics, the real coordinate space or real coordinate ''n''-space, of dimension , denoted or , is the set of all ordered -tuples of real numbers, that is the set of all sequences of real numbers, also known as '' coordinate vectors''. ...
, is the
Cartesian plane In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
, \R ^2 . A similar process can be used to form the direct sum of two
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. That is, (A \oplus B) \oplus C \cong A \oplus (B \oplus C) for any algebraic structures A, B, and C of the same kind. The direct sum is also
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
up to isomorphism, i.e. A \oplus B \cong B \oplus A for any algebraic structures A and B of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the corresponding
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
. That is false, however, for some algebraic objects like nonabelian groups. In the case where infinitely many objects are combined, the direct sum and direct product are not isomorphic even for abelian groups, vector spaces, or modules. For example, consider the direct sum and the direct product of (countably) infinitely many copies of the integers. An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both. Often, if a + sign is used, all but finitely many coordinates must be zero, while if some form of multiplication is used, all but finitely many coordinates must be 1. In more technical language, if the summands are (A_i)_, the direct sum \bigoplus_ A_i is defined to be the set of tuples (a_i)_ with a_i \in A_i such that a_i=0 for all but finitely many ''i''. The direct sum \bigoplus_ A_i is contained in the
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
\prod_ A_i, but is strictly smaller when the
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists ...
I is infinite, because an element of the direct product can have infinitely many nonzero coordinates.


Examples

The ''xy''-plane, a two-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
, can be thought of as the direct sum of two one-dimensional vector spaces: the ''x'' and ''y'' axes. In this direct sum, the ''x'' and ''y'' axes intersect only at the origin (the zero vector). Addition is defined coordinate-wise; that is, (x_1,y_1) + (x_2,y_2) = (x_1+x_2, y_1 + y_2), which is the same as vector addition. Given two structures A and B, their direct sum is written as A\oplus B. Given an
indexed family In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, wher ...
of structures A_i, indexed with i \in I, the direct sum may be written A=\bigoplus_A_i. Each ''Ai'' is called a direct summand of ''A''. If the index set is finite, the direct sum is the same as the direct product. In the case of groups, if the group operation is written as + the phrase "direct sum" is used, while if the group operation is written * the phrase "direct product" is used. When the index set is infinite, the direct sum is not the same as the direct product since the direct sum has the extra requirement that all but finitely many coordinates must be zero.


Internal and external direct sums

A distinction is made between internal and external direct sums though both are isomorphic. If the summands are defined first, and the direct sum is then defined in terms of the summands, there is an external direct sum. For example, if the real numbers \mathbb are defined, followed by \mathbb \oplus \mathbb, the direct sum is said to be external. If, on the other hand, some algebraic structure S is defined, and S is then defined as a direct sum of two substructures V and W, the direct sum is said to be internal. In that case, each element of S is expressible uniquely as an algebraic combination of an element of V and an element of W. For an example of an internal direct sum, consider \mathbb Z_6 (the integers modulo six), whose elements are \. This is expressible as an internal direct sum \mathbb Z_6 = \ \oplus \.


Types of direct sums


Direct sum of abelian groups

The direct sum of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s is a prototypical example of a direct sum. Given two such groups (A, \circ) and (B, \bullet), their direct sum A \oplus B is the same as their
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
. That is, the underlying set is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
A \times B and the group operation \,\cdot\, is defined component-wise: \left(a_1, b_1\right) \cdot \left(a_2, b_2\right) = \left(a_1 \circ a_2, b_1 \bullet b_2\right). This definition generalizes to direct sums of finitely many abelian groups. For an arbitrary family of groups A_i indexed by i \in I, their \bigoplus_ A_i is the
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the direct product that consists of the elements \left(a_i\right)_ \in \prod_ A_i that have finite support, where, by definition, \left(a_i\right)_ is said to have if a_i is the identity element of A_i for all but finitely many i. The direct sum of an infinite family \left(A_i\right)_ of non-trivial groups is a
proper subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the product group \prod_ A_i.


Direct sum of modules

The ''direct sum of modules'' is a construction that combines several modules into a new module. The most familiar examples of that construction occur in considering
vector spaces In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', can be added together and multiplied ("scaled") by numbers called ''scalars''. The operations of vector addition and sc ...
, which are modules over a field. The construction may also be extended to
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
and
Hilbert spaces In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
.


Direct sum in categories

An
additive category In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. Definition There are two equivalent definitions of an additive category: One as a category equipped wit ...
is an abstraction of the properties of the category of modules. In such a category, finite products and
coproducts In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coprod ...
agree, and the direct sum is either of them: cf.
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
. General case: In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
the is often but not always the coproduct in the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
of the mathematical objects in question. For example, in the category of abelian groups, the direct sum is a coproduct. That is also true in the category of modules.


Direct sums versus coproducts in category of groups

However, the direct sum S_3 \oplus \Z_2 (defined identically to the direct sum of abelian groups) is not a coproduct of the groups S_3 and \Z_2 in the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
. Therefore, for that category, a categorical direct sum is often called simply a coproduct to avoid any possible confusion.


Direct sum of group representations

The direct sum of group representations generalizes the direct sum of the underlying modules by adding a
group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
. Specifically, given a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
G and two representations V and W of G (or, more generally, two G-modules), the direct sum of the representations is V \oplus W with the action of g \in G given component-wise, that is, g \cdot (v, w) = (g \cdot v, g \cdot w). Another equivalent way of defining the direct sum is as follows: Given two representations (V, \rho_V) and (W, \rho_W) the vector space of the direct sum is V \oplus W and the homomorphism \rho_ is given by \alpha \circ (\rho_V \times \rho_W), where \alpha: GL(V) \times GL(W) \to GL(V \oplus W) is the natural map obtained by coordinate-wise action as above. Furthermore, if V,\,W are finite dimensional, then, given a basis of V,\,W, \rho_V and \rho_W are matrix-valued. In this case, \rho_ is given as g \mapsto \begin\rho_V(g) & 0 \\ 0 & \rho_W(g)\end. Moreover, if V and W are treated as modules over the
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
kG, where k is the field, the direct sum of the representations V and W is equal to their direct sum as kG modules.


Direct sum of rings

Some authors speak of the direct sum R \oplus S of two rings when they mean the
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
R \times S, but that should be avoided since R \times S does not receive natural ring homomorphisms from R and S. In particular, the map R \to R \times S sending r to (r, 0) is not a ring homomorphism since it fails to send 1 to (1, 1) (assuming that 0 \neq 1 in S). Thus, R \times S is not a coproduct in the
category of rings In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings i ...
, and should not be written as a direct sum. (The coproduct in the category of commutative rings is the tensor product of rings., section I.11 In the category of rings, the coproduct is given by a construction similar to the
free product In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, an ...
of groups.) The use of direct sum terminology and notation is especially problematic in dealing with infinite families of rings. If (R_i)_ is an infinite collection of nontrivial rings, the direct sum of the underlying additive groups may be equipped with termwise multiplication, but that produces a rng, a ring without a multiplicative identity.


Direct sum of matrices

For any arbitrary matrices \mathbf and \mathbf, the direct sum \mathbf \oplus \mathbf is defined as the block diagonal matrix of \mathbf and \mathbf if both are square matrices (and to an analogous
block matrix In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix w ...
, if not). \mathbf \oplus \mathbf = \begin \mathbf & 0 \\ 0 & \mathbf \end. Alternatively, the forms \left begin\mathbf \\ \mathbf\end\right/math> or \left begin \mathbf & \mathbf\end\right/math> may also be encountered in the literature and are isomorphic to the aforementioned block form.


Direct sum of topological vector spaces

A
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(TVS) X, such as a
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
, is said to be a of two vector subspaces M and N if the addition map \begin \ \;&& M \times N &&\;\to \;& X \\ .3ex && (m, n) &&\;\mapsto\;& m + n \\ \end is an isomorphism of topological vector spaces (meaning that this
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
is a
bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
) in which case M and N are said to be in X. That is true if and only if when considered as
additive Additive may refer to: Mathematics * Additive function, a function in number theory * Additive map, a function that preserves the addition operation * Additive set-function see Sigma additivity * Additive category, a preadditive category with fin ...
topological groups In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures t ...
(so scalar multiplication is ignored), X is the topological direct sum of the topological subgroups M and N. If this is the case and if X is Hausdorff then M and N are necessarily closed subspaces of X. If M is a vector subspace of a real or complex vector space X, there is always another vector subspace N of X, called an such that X is the of M and N, which happens if and only if the addition map M \times N \to X is a vector space isomorphism. In contrast to algebraic direct sums, the existence of such a complement is no longer guaranteed for topological direct sums. A vector subspace M of X is said to be a () if there exists some vector subspace N of X such that X is the topological direct sum of M and N. A vector subspace is called if it is not a complemented subspace. For example, every vector subspace of a Hausdorff TVS that is not a closed subset is necessarily uncomplemented. Every closed vector subspace of a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
is complemented. But every
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
that is not a Hilbert space necessarily possess some uncomplemented closed vector subspace.


Homomorphisms

The direct sum \bigoplus_ A_i comes equipped with a ''
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
''
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
\pi_j \colon \, \bigoplus_ A_i \to A_j for each ''j'' in ''I'' and a ''coprojection'' \alpha_j \colon \, A_j \to \bigoplus_ A_i for each ''j'' in ''I''. Given another algebraic structure B (with the same additional structure) and homomorphisms g_j \colon A_j \to B for every ''j'' in ''I'', there is a unique homomorphism g \colon \, \bigoplus_ A_i \to B, called the sum of the ''g''''j'', such that g \alpha_j =g_j for all ''j''. Thus the direct sum is the
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The cop ...
in the appropriate
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
.


See also

*
Direct sum of groups In mathematics, a group ''G'' is called the direct sumHomology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.László Fuchs. Infinite Abelian Groups of two normal subgroups with trivial intersection if it is generated ...
*
Direct sum of permutations In combinatorics, the skew sum and direct sum of permutations are two operations to combine shorter permutations into longer ones. Given a permutation ''π'' of length ''m'' and the permutation ''σ'' of length ''n'', the skew sum of ''π'' and ''� ...
* Direct sum of topological groups *
Restricted product In mathematics, the restricted product is a construction in the theory of topological groups. Let I be an index set; S a finite subset of I. If G_i is a locally compact group for each i \in I, and K_i \subset G_i is an open compact subgroup for ea ...
*
Whitney sum In mathematics, a vector bundle is a topological construction that makes precise the idea of a Family of sets, family of vector spaces parameterized by another space (mathematics), space X (for example X could be a topological space, a manifold, ...
*
Feferman–Vaught theorem The Feferman–Vaught theorem in model theory is a theorem by Solomon Feferman and Robert Lawson Vaught that shows how to reduce, in an algorithmic way, the first-order theory of a product of structures to the first-order theory of elements of t ...


Notes


References

*{{Lang Algebra, edition=3r Abstract algebra