HOME

TheInfoList



OR:

Fick's laws of diffusion describe
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the
diffusion coefficient Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurate ...
, . Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation. ''Fick's first law'': Movement of particles from high to low concentration (diffusive flux) is directly proportional to the particle's concentration gradient. ''Fick's second law'': Prediction of change in concentration gradient with time due to diffusion. A diffusion process that obeys Fick's laws is called normal or Fickian diffusion; otherwise, it is called anomalous diffusion or non-Fickian diffusion.


History

In 1855, physiologist Adolf Fick first reported* * his now well-known laws governing the transport of mass through diffusive means. Fick's work was inspired by the earlier experiments of Thomas Graham, which fell short of proposing the fundamental laws for which Fick would become famous. Fick's law is analogous to the relationships discovered at the same epoch by other eminent scientists: Darcy's law (hydraulic flow),
Ohm's law Ohm's law states that the electric current through a Electrical conductor, conductor between two Node (circuits), points is directly Proportionality (mathematics), proportional to the voltage across the two points. Introducing the constant of ...
(charge transport), and
Fourier's law Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy ...
(heat transport). Fick's experiments (modeled on Graham's) dealt with measuring the concentrations and fluxes of salt, diffusing between two reservoirs through tubes of water. It is notable that Fick's work primarily concerned diffusion in fluids, because at the time, diffusion in solids was not considered generally possible. Today, Fick's laws form the core of our understanding of diffusion in solids, liquids, and gases (in the absence of bulk fluid motion in the latter two cases). When a diffusion process does ''not'' follow Fick's laws (which happens in cases of diffusion through porous media and diffusion of swelling penetrants, among others), it is referred to as ''non-Fickian''.


Fick's first law

Fick's first law relates the diffusive
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low concentration across a concentration gradient. In one (spatial) dimension, the law can be written in various forms, where the most common form (see) is in a molar basis: : J = -D \frac, where * is the diffusion flux, of which the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
is the
amount of substance In chemistry, the amount of substance (symbol ) in a given sample of matter is defined as a ratio () between the particle number, number of elementary entities () and the Avogadro constant (). The unit of amount of substance in the International ...
per unit area per unit time. measures the amount of substance that will flow through a unit area during a unit time interval, * is the diffusion coefficient or diffusivity. Its dimension is area per unit time, * \frac is the concentration gradient, * (for ideal mixtures) is the concentration, with a dimension of amount of substance per unit volume, * is position, the dimension of which is length. is proportional to the squared velocity of the diffusing particles, which depends on the temperature,
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of the fluid and the size of the particles according to the Stokes–Einstein relation. The modeling and prediction of Fick's diffusion coefficients is difficult. They can be estimated using the empirical Vignes correlation model or the physically-motivated entropy scaling. In dilute aqueous solutions the diffusion coefficients of most ions are similar and have values that at room temperature are in the range of . For biological molecules the diffusion coefficients normally range from 10−10 to 10−11 m2/s. In two or more dimensions we must use , the
del Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes ...
or
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
operator, which generalises the first derivative, obtaining : \mathbf=- D\nabla \varphi , where denotes the diffusion flux. The driving force for the one-dimensional diffusion is the quantity , which for ideal mixtures is the concentration gradient.


Variations of the first law

Another form for the first law is to write it with the primary variable as mass fraction (, given for example in kg/kg), then the equation changes to : \mathbf_i = -\frac\nabla y_i , where * the index denotes the th species, * is the diffusion flux of the th species (for example in mol/m2/s), * is the
molar mass In chemistry, the molar mass () (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical substance ( element or compound) is defined as the ratio between the mass () and the amount of substance ...
of the th species, * is the mixture
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(for example in kg/m3). The \rho is outside the
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
operator. This is because : y_i = \frac , where is the partial density of the th species. Beyond this, in chemical systems other than ideal solutions or mixtures, the driving force for the diffusion of each species is the gradient of
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
of this species. Then Fick's first law (one-dimensional case) can be written : J_i = - \frac \frac , where * the index denotes the th species, * is the concentration (mol/m3), * is the
universal gas constant The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature, temperature ...
(J/K/mol), * is the absolute temperature (K), * is the chemical potential (J/mol). The driving force of Fick's law can be expressed as a fugacity difference: : J_i = - \frac \frac , where f_i is the fugacity in Pa. f_i is a partial pressure of component in a vapor f_i^\text or liquid f_i^\text phase. At vapor liquid equilibrium the evaporation flux is zero because f_i^\text = f_i^\text .


Derivation of Fick's first law for gases

Four versions of Fick's law for binary gas mixtures are given below. These assume: thermal diffusion is negligible; the body force per unit mass is the same on both species; and either pressure is constant or both species have the same molar mass. Under these conditions, Ref. shows in detail how the diffusion equation from the
kinetic theory of gases The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small ...
reduces to this version of Fick's law: \mathbf=- D\nabla \ln , where is the diffusion velocity of species . In terms of species flux this is \mathbf=- \frac\nabla y_i . If, additionally, \nabla \rho = 0, this reduces to the most common form of Fick's law, \mathbf=- D\nabla \varphi . If (instead of or in addition to \nabla \rho = 0) both species have the same molar mass, Fick's law becomes \mathbf=- \frac\nabla x_i, where x_i is the mole fraction of species .


Fick's second law

Fick's second law predicts how diffusion causes the concentration to change with respect to time. It is a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
which in one dimension reads : \frac = D\,\frac, where * is the concentration in dimensions of mathsf\mathsf^/math>, example mol/m3; is a function that depends on location and time , * is time, example s, * is the diffusion coefficient in dimensions of mathsf^2\mathsf^/math>, example m2/s, * is the position, example m. In two or more dimensions we must use the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
, which generalises the second derivative, obtaining the equation : \frac = D\Delta \varphi . Fick's second law has the same mathematical form as the
Heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
and its
fundamental solution In mathematics, a fundamental solution for a linear partial differential operator is a formulation in the language of distribution theory of the older idea of a Green's function (although unlike Green's functions, fundamental solutions do not ...
is the same as the
Heat kernel In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum ...
, except switching thermal conductivity k with diffusion coefficient D: \varphi(x,t)=\frac\exp\left(-\frac\right).


Derivation of Fick's second law

Fick's second law can be derived from Fick's first law and the mass conservation in absence of any chemical reactions: : \frac + \fracJ = 0 \Rightarrow\frac -\frac\left(D\frac\varphi\right)\,=0. Assuming the diffusion coefficient to be a constant, one can exchange the orders of the differentiation and multiply by the constant: :\frac\left(D\frac \varphi\right) = D\frac \frac \varphi = D\frac, and, thus, receive the form of the Fick's equations as was stated above. For the case of diffusion in two or more dimensions Fick's second law becomes : \frac = D\,\nabla^2\varphi, which is analogous to the
heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
. If the diffusion coefficient is not a constant, but depends upon the coordinate or concentration, Fick's second law yields : \frac = \nabla \cdot (D\,\nabla\varphi). An important example is the case where is at a steady state, i.e. the concentration does not change by time, so that the left part of the above equation is identically zero. In one dimension with constant , the solution for the concentration will be a linear change of concentrations along . In two or more dimensions we obtain : \nabla^2\varphi = 0, which is
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties in 1786. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delt ...
, the solutions to which are referred to by mathematicians as harmonic functions.


Example solutions and generalization

Fick's second law is a special case of the convection–diffusion equation in which there is no advective flux and no net volumetric source. It can be derived from the continuity equation: : \frac + \nabla\cdot\mathbf = R, where is the total
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
and is a net volumetric source for . The only source of flux in this situation is assumed to be ''diffusive flux'': : \mathbf_ = -D \nabla \varphi . Plugging the definition of diffusive flux to the continuity equation and assuming there is no source (), we arrive at Fick's second law: : \frac = D\frac . If flux were the result of both diffusive flux and advective flux, the convection–diffusion equation is the result.


Example solution 1: constant concentration source and diffusion length

A simple case of diffusion with time in one dimension (taken as the -axis) from a boundary located at position , where the concentration is maintained at a value is : n \left(x,t \right)=n_0 \operatorname \left( \frac\right) , where is the complementary
error function In mathematics, the error function (also called the Gauss error function), often denoted by , is a function \mathrm: \mathbb \to \mathbb defined as: \operatorname z = \frac\int_0^z e^\,\mathrm dt. The integral here is a complex Contour integrat ...
. This is the case when corrosive gases diffuse through the oxidative layer towards the metal surface (if we assume that concentration of gases in the environment is constant and the diffusion space – that is, the corrosion product layer – is ''semi-infinite'', starting at 0 at the surface and spreading infinitely deep in the material). If, in its turn, the diffusion space is ''infinite'' (lasting both through the layer with , and that with , ), then the solution is amended only with coefficient in front of (as the diffusion now occurs in both directions). This case is valid when some solution with concentration is put in contact with a layer of pure solvent. (Bokstein, 2005) The length is called the ''diffusion length'' and provides a measure of how far the concentration has propagated in the -direction by diffusion in time (Bird, 1976). As a quick approximation of the error function, the first two terms of the
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
can be used: : n(x,t)=n_0 \left 1 - 2 \left(\frac\right) \right. If is time-dependent, the diffusion length becomes : 2\sqrt. This idea is useful for estimating a diffusion length over a heating and cooling cycle, where varies with temperature.


Example solution 2: Brownian particle and mean squared displacement

Another simple case of diffusion is the
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
of one particle. The particle's Mean squared displacement from its original position is: \text \equiv \left \langle (\mathbf-\mathbf)^2 \right \rangle=2nDt , where n is the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
of the particle's Brownian motion. For example, the diffusion of a molecule across a
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
8 nm thick is 1-D diffusion because of the spherical symmetry; However, the diffusion of a molecule from the membrane to the center of a eukaryotic cell is a 3-D diffusion. For a cylindrical
cactus A cactus (: cacti, cactuses, or less commonly, cactus) is a member of the plant family Cactaceae (), a family of the order Caryophyllales comprising about 127 genera with some 1,750 known species. The word ''cactus'' derives, through Latin, ...
, the diffusion from photosynthetic cells on its surface to its center (the axis of its cylindrical symmetry) is a 2-D diffusion. The square root of MSD, \sqrt, is often used as a characterization of how far the particle has moved after time t has elapsed. The MSD is symmetrically distributed over the 1D, 2D, and 3D space. Thus, the probability distribution of the magnitude of MSD in 1D is Gaussian and 3D is a Maxwell-Boltzmann distribution.


Generalizations

* In ''non-homogeneous media'', the diffusion coefficient varies in space, . This dependence does not affect Fick's first law but the second law changes: \frac=\nabla\cdot \bigl(D(x) \nabla \varphi(x,t)\bigr)=D(x) \Delta \varphi(x,t)+\sum_^3 \frac \frac. * In ''
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
media'', the diffusion coefficient depends on the direction. It is a symmetric
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
. Fick's first law changes to J=-D \nabla \varphi , it is the product of a tensor and a vector: J_i=-\sum_^3 D_ \frac. For the diffusion equation this formula gives \frac=\nabla\cdot \bigl(D \nabla \varphi(x,t)\bigr)=\sum_^3\sum_^3D_ \frac. The symmetric matrix of diffusion coefficients should be positive definite. It is needed to make the right-hand side operator elliptic. * For ''inhomogeneous anisotropic media'' these two forms of the diffusion equation should be combined in \frac=\nabla\cdot \bigl(D(x) \nabla \varphi(x,t)\bigr)=\sum_^3\left(D_(x) \frac+ \frac \frac\right). * The approach based on Einstein's mobility and Teorell formula gives the following generalization of Fick's equation for the ''multicomponent diffusion'' of the perfect components: \frac = \sum_j \nabla\cdot\left(D_ \frac \nabla \, \varphi_j\right) , where are concentrations of the components and is the matrix of coefficients. Here, indices and are related to the various components and not to the space coordinates. The Chapman–Enskog formulae for diffusion in gases include exactly the same terms. These physical models of diffusion are different from the test models which are valid for very small deviations from the uniform equilibrium. Earlier, such terms were introduced in the Maxwell–Stefan diffusion equation. For anisotropic multicomponent diffusion coefficients one needs a rank-four tensor, for example , where refer to the components and correspond to the space coordinates.


Applications

Equations based on Fick's law have been commonly used to model transport processes in foods,
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s,
biopolymer Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, ...
s,
pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
, porous
soil Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, water, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from ''soil'' by re ...
s,
population dynamics Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems. Population dynamics is a branch of mathematical biology, and uses mathematical techniques such as differenti ...
, nuclear materials,
plasma physics Plasma () is a state of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars (including th ...
, and semiconductor doping processes. The theory of voltammetric methods is based on solutions of Fick's equation. On the other hand, in some cases a "Fickian (another common approximation of the transport equation is that of the diffusion theory)" description is inadequate. For example, in
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
science and food science a more general approach is required to describe transport of components in materials undergoing a
glass transition The glass–liquid transition, or glass transition, is the gradual and Reversible reaction, reversible transition in amorphous solid, amorphous materials (or in amorphous regions within Crystallinity, semicrystalline materials) from a hard and rel ...
. One more general framework is the Maxwell–Stefan diffusion equations of multi-component
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
, from which Fick's law can be obtained as a limiting case, when the mixture is extremely dilute and every chemical species is interacting only with the bulk mixture and not with other species. To account for the presence of multiple species in a non-dilute mixture, several variations of the Maxwell–Stefan equations are used. See also non-diagonal coupled transport processes ( Onsager relationship).


Fick's flow in liquids

When two miscible liquids are brought into contact, and diffusion takes place, the macroscopic (or average) concentration evolves following Fick's law. On a mesoscopic scale, that is, between the macroscopic scale described by Fick's law and molecular scale, where molecular
random walk In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space. An elementary example of a rand ...
s take place, fluctuations cannot be neglected. Such situations can be successfully modeled with Landau-Lifshitz fluctuating hydrodynamics. In this theoretical framework, diffusion is due to fluctuations whose dimensions range from the molecular scale to the macroscopic scale. In particular, fluctuating hydrodynamic equations include a Fick's flow term, with a given diffusion coefficient, along with hydrodynamics equations and stochastic terms describing fluctuations. When calculating the fluctuations with a perturbative approach, the zero order approximation is Fick's law. The first order gives the fluctuations, and it comes out that fluctuations contribute to diffusion. This represents somehow a tautology, since the phenomena described by a lower order approximation is the result of a higher approximation: this problem is solved only by renormalizing the fluctuating hydrodynamics equations.


Sorption rate and collision frequency of diluted solute

Adsorption, absorption, and collision of molecules, particles, and surfaces are important problems in many fields. These fundamental processes regulate chemical, biological, and environmental reactions. Their rate can be calculated using the diffusion constant and Fick's laws of diffusion especially when these interactions happen in diluted solutions. Typically, the diffusion constant of molecules and particles defined by Fick's equation can be calculated using the Stokes–Einstein equation. In the ultrashort time limit, in the order of the diffusion time ''a''2/''D'', where ''a'' is the particle radius, the diffusion is described by the
Langevin equation In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Lange ...
. At a longer time, the
Langevin equation In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Lange ...
merges into the Stokes–Einstein equation. The latter is appropriate for the condition of the diluted solution, where long-range diffusion is considered. According to the fluctuation-dissipation theorem based on the
Langevin equation In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Lange ...
in the long-time limit and when the particle is significantly denser than the surrounding fluid, the time-dependent diffusion constant is: : D(t) = \mu \, k_ T\left(1-e^\right) , where (all in SI units) * ''k''B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
, * ''T'' is the
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
, * ''μ'' is the mobility of the particle in the fluid or gas, which can be calculated using the
Einstein relation (kinetic theory) In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works ...
, * ''m'' is the mass of the particle, * ''t'' is time. For a single molecule such as organic molecules or
biomolecule A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
s (e.g. proteins) in water, the exponential term is negligible due to the small product of ''mμ'' in the ultrafast picosecond region, thus irrelevant to the relatively slower adsorption of diluted solute. The
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
or absorption rate of a dilute solute to a surface or interface in a (gas or liquid) solution can be calculated using Fick's laws of diffusion. The accumulated number of molecules adsorbed on the surface is expressed by the Langmuir-Schaefer equation by integrating the diffusion flux equation over time as shown in the simulated molecular diffusion in the first section of this page: : \Gamma= 2AC_b\sqrt. * is the surface area (m2). * C_b is the number concentration of the adsorber molecules (solute) in the bulk solution (#/m3). * is diffusion coefficient of the adsorber (m2/s). * is elapsed time (s). * \Gamma is the accumulated number of molecules in unit # molecules adsorbed during the time t. The equation is named after American chemists
Irving Langmuir Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and metallurgical engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry. Langmuir's most famous publicatio ...
and Vincent Schaefer. Briefly as explained in, the concentration gradient profile near a newly created (from t=0) absorptive surface (placed at x=0) in a once uniform bulk solution is solved in the above sections from Fick's equation, : \frac = \frac\text \left (-\frac \right ) , where is the number concentration of adsorber molecules at x, t (#/m3). The concentration gradient at the subsurface at x = 0 is simplified to the pre-exponential factor of the distribution : \left (\frac \right ) _ = \frac . And the rate of diffusion (flux) across area A . of the plane is : \left (\frac \right ) _ = -\frac . Integrating over time, : \Gamma = \int_0^t \left( \frac \right) _ = 2AC_b\sqrt . The Langmuir–Schaefer equation can be extended to the Ward–Tordai Equation to account for the "back-diffusion" of rejected molecules from the surface: : \Gamma= 2A\sqrt - A\sqrt\int_0^\sqrt\frac \, d\tau , where C_b is the bulk concentration, C is the sub-surface concentration (which is a function of time depending on the reaction model of the adsorption), and \tau is a dummy variable. Monte Carlo simulations show that these two equations work to predict the adsorption rate of systems that form predictable concentration gradients near the surface but have troubles for systems without or with unpredictable concentration gradients, such as typical biosensing systems or when flow and convection are significant. A brief history of diffusive adsorption is shown in the right figure. A noticeable challenge of understanding the diffusive adsorption at the single-molecule level is the
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
nature of diffusion. Most computer simulations pick a time step for diffusion which ignores the fact that there are self-similar finer diffusion events (fractal) within each step. Simulating the fractal diffusion shows that a factor of two corrections should be introduced for the result of a fixed time-step adsorption simulation, bringing it to be consistent with the above two equations. A more problematic result of the above equations is they predict the lower limit of adsorption under ideal situations but is very difficult to predict the actual adsorption rates. The equations are derived at the long-time-limit condition when a stable concentration gradient has been formed near the surface. But real adsorption is often done much faster than this infinite time limit i.e. the concentration gradient, decay of concentration at the sub-surface, is only partially formed before the surface has been saturated or flow is on to maintain a certain gradient, thus the adsorption rate measured is almost always faster than the equations have predicted for low or none energy barrier adsorption (unless there is a significant adsorption energy barrier that slows down the absorption significantly), for example, thousands to millions time faster in the self-assembly of monolayers at the water-air or water-substrate interfaces. As such, it is necessary to calculate the evolution of the concentration gradient near the surface and find out a proper time to stop the imagined infinite evolution for practical applications. While it is hard to predict when to stop but it is reasonably easy to calculate the shortest time that matters, the critical time when the first nearest neighbor from the substrate surface feels the building-up of the concentration gradient. This yields the upper limit of the adsorption rate under an ideal situation when there are no other factors than diffusion that affect the absorber dynamics: : \langle r \rangle = \fracA C_b^D , where: * \langle r \rangle is the adsorption rate assuming under adsorption energy barrier-free situation, in unit #/s, * A is the area of the surface of interest on an "infinite and flat" substrate (m2), * C_b is the concentration of the absorber molecule in the bulk solution (#/m3), * D is the diffusion constant of the absorber (solute) in the solution (m2/s) defined with Fick's law. This equation can be used to predict the initial adsorption rate of any system; It can be used to predict the steady-state adsorption rate of a typical biosensing system when the binding site is just a very small fraction of the substrate surface and a near-surface concentration gradient is never formed; It can also be used to predict the adsorption rate of molecules on the surface when there is a significant flow to push the concentration gradient very shallowly in the sub-surface. This critical time is significantly different from the first passenger arriving time or the mean free-path time. Using the average first-passenger time and Fick's law of diffusion to estimate the average binding rate will significantly over-estimate the concentration gradient because the first passenger usually comes from many layers of neighbors away from the target, thus its arriving time is significantly longer than the nearest neighbor diffusion time. Using the mean free path time plus the Langmuir equation will cause an artificial concentration gradient between the initial location of the first passenger and the target surface because the other neighbor layers have no change yet, thus significantly lower estimate the actual binding time, i.e., the actual first passenger arriving time itself, the inverse of the above rate, is difficult to calculate. If the system can be simplified to 1D diffusion, then the average first passenger time can be calculated using the same nearest neighbor critical diffusion time for the first neighbor distance to be the MSD, :L = \sqrt , where: *L~=C_b^ (unit m) is the average nearest neighbor distance approximated as cubic packing, where C_b is the solute concentration in the bulk solution (unit # molecule / m3), *D is the diffusion coefficient defined by Fick's equation (unit m2/s), *t is the critical time (unit s). In this critical time, it is unlikely the first passenger has arrived and adsorbed. But it sets the speed of the layers of neighbors to arrive. At this speed with a concentration gradient that stops around the first neighbor layer, the gradient does not project virtually in the longer time when the actual first passenger arrives. Thus, the average first passenger coming rate (unit # molecule/s) for this 3D diffusion simplified in 1D problem, : = \frac = 2aC_b^D , where a is a factor of converting the 3D diffusive adsorption problem into a 1D diffusion problem whose value depends on the system, e.g., a fraction of adsorption area A over solute nearest neighbor sphere surface area 4 \pi L^2 /4 assuming cubic packing each unit has 8 neighbors shared with other units. This example fraction converges the result to the 3D diffusive adsorption solution shown above with a slight difference in pre-factor due to different packing assumptions and ignoring other neighbors. When the area of interest is the size of a molecule (specifically, a ''long cylindrical molecule'' such as DNA), the adsorption rate equation represents the collision frequency of two molecules in a diluted solution, with one molecule a specific side and the other no steric dependence, i.e., a molecule (random orientation) hit one side of the other. The diffusion constant need to be updated to the relative diffusion constant between two diffusing molecules. This estimation is especially useful in studying the interaction between a small molecule and a larger molecule such as a protein. The effective diffusion constant is dominated by the smaller one whose diffusion constant can be used instead. The above hitting rate equation is also useful to predict the kinetics of molecular self-assembly on a surface. Molecules are randomly oriented in the bulk solution. Assuming 1/6 of the molecules has the right orientation to the surface binding sites, i.e. 1/2 of the z-direction in x, y, z three dimensions, thus the concentration of interest is just 1/6 of the bulk concentration. Put this value into the equation one should be able to calculate the theoretical adsorption kinetic curve using the Langmuir adsorption model. In a more rigid picture, 1/6 can be replaced by the steric factor of the binding geometry. The bimolecular collision frequency related to many reactions including protein coagulation/aggregation is initially described by Smoluchowski coagulation equation proposed by Marian Smoluchowski in a seminal 1916 publication, derived from
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
and Fick's laws of diffusion. Under an idealized reaction condition for A + B → product in a diluted solution, Smoluchovski suggested that the molecular flux at the infinite time limit can be calculated from Fick's laws of diffusion yielding a fixed/stable concentration gradient from the target molecule, e.g. B is the target molecule holding fixed relatively, and A is the moving molecule that creates a concentration gradient near the target molecule B due to the coagulation reaction between A and B. Smoluchowski calculated the collision frequency between A and B in the solution with unit #/s/m3: : Z_ = 4RD_rC_AC_B, where: * R is the radius of the collision, * D_r = D_A + D_B is the relative diffusion constant between A and B (m2/s), * C_A and C_B are number concentrations of A and B respectively (#/m3). The reaction order of this bimolecular reaction is 2 which is the analogy to the result from
collision theory Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the Reagent, reactant hit each other with the correct orientation, only a certain amount of collisions result ...
by replacing the moving speed of the molecule with diffusive flux. In the collision theory, the traveling time between A and B is proportional to the distance which is a similar relationship for the diffusion case if the flux is fixed. However, under a practical condition, the concentration gradient near the target molecule is evolving over time with the molecular flux evolving as well, and on average the flux is much bigger than the infinite time limit flux Smoluchowski has proposed. Before the first passenger arrival time, Fick's equation predicts a concentration gradient over time which does not build up yet in reality. Thus, this Smoluchowski frequency represents the lower limit of the real collision frequency. In 2022, Chen calculates the upper limit of the collision frequency between A and B in a solution assuming the bulk concentration of the moving molecule is fixed after the first nearest neighbor of the target molecule. Thus the concentration gradient evolution stops at the first nearest neighbor layer given a stop-time to calculate the actual flux. He named this the critical time and derived the diffusive collision frequency in unit #/s/m3: : Z_ = \frac D_rC_AC_B\sqrt , where: * is the area of the cross-section of the collision (m2), * D_r = D_A + D_B is the relative diffusion constant between A and B (m2/s), * C_A and C_B are number concentrations of A and B respectively (#/m3), * \sqrt represents 1/, where d is the average distance between two molecules. This equation assumes the upper limit of a diffusive collision frequency between A and B is when the first neighbor layer starts to feel the evolution of the concentration gradient, whose reaction order is instead of 2. Both the Smoluchowski equation and the JChen equation satisfy dimensional checks with SI units. But the former is dependent on the radius and the latter is on the area of the collision sphere. From dimensional analysis, there will be an equation dependent on the volume of the collision sphere but eventually, all equations should converge to the same numerical rate of the collision that can be measured experimentally. The actual reaction order for a bimolecular unit reaction could be between 2 and , which makes sense because the diffusive collision time is squarely dependent on the distance between the two molecules. These new equations also avoid the singularity on the adsorption rate at time zero for the Langmuir-Schaefer equation. The infinity rate is justifiable under ideal conditions because when you introduce target molecules magically in a solution of probe molecule or vice versa, there always be a probability of them overlapping at time zero, thus the rate of that two molecules association is infinity. It does not matter that other millions of molecules have to wait for their first mate to diffuse and arrive. The average rate is thus infinity. But statistically this argument is meaningless. The maximum rate of a molecule in a period of time larger than zero is 1, either meet or not, thus the infinite rate at time zero for that molecule pair really should just be one, making the average rate 1/millions or more and statistically negligible. This does not even count in reality no two molecules can magically meet at time zero.


Biological perspective

The first law gives rise to the following formula: : \text = , where * is the permeability, an experimentally determined membrane " conductance" for a given gas at a given temperature, * is the difference in
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
of the gas across the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
for the direction of flow (from to ). Fick's first law is also important in radiation transfer equations. However, in this context, it becomes inaccurate when the diffusion constant is low and the radiation becomes limited by the speed of light rather than by the resistance of the material the radiation is flowing through. In this situation, one can use a flux limiter. The exchange rate of a gas across a fluid membrane can be determined by using this law together with
Graham's law Graham's law of effusion (also called Graham's law of diffusion) was formulated by Scottish physical chemist Thomas Graham in 1848. Keith J. Laidler and John M. Meiser, ''Physical Chemistry'' (Benjamin/Cummings 1982), pp. 18–19 Graham fou ...
. Under the condition of a diluted solution when diffusion takes control, the membrane permeability mentioned in the above section can be theoretically calculated for the solute using the equation mentioned in the last section (use with particular care because the equation is derived for dense solutes, while biological molecules are not denser than water. Also, this equation assumes ideal concentration gradient forms near the membrane and evolves): : P= 2A_p\eta_ \sqrt , where: * A_P is the total area of the pores on the membrane (unit m2), * \eta_ transmembrane efficiency (unitless), which can be calculated from the stochastic theory of
chromatography In chemical analysis, chromatography is a laboratory technique for the Separation process, separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it ...
, * ''D'' is the diffusion constant of the solute unit m2⋅s−1, * ''t'' is time unit s, * ''c''2, ''c''1 concentration should use unit mol m−3, so flux unit becomes mol s−1. The flux is decay over the square root of time because a concentration gradient builds up near the membrane over time under ideal conditions. When there is flow and convection, the flux can be significantly different than the equation predicts and show an effective time t with a fixed value, which makes the flux stable instead of decay over time. A critical time has been estimated under idealized flow conditions when there is no gradient formed. This strategy is adopted in biology such as blood circulation.


Semiconductor fabrication applications

The
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
is a collective term for a series of devices. It mainly includes three categories:two-terminal devices, three-terminal devices, and four-terminal devices. The combination of the semiconductors is called an integrated circuit. The relationship between Fick's law and semiconductors: the principle of the semiconductor is transferring chemicals or dopants from a layer to a layer. Fick's law can be used to control and predict the diffusion by knowing how much the concentration of the dopants or chemicals move per meter and second through mathematics. Therefore, different types and levels of semiconductors can be fabricated.
Integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
fabrication technologies, model processes like CVD, thermal oxidation, wet oxidation, doping, etc. use diffusion equations obtained from Fick's law.


CVD method of fabricate semiconductor

The wafer is a kind of semiconductor whose silicon substrate is coated with a layer of CVD-created polymer chain and films. This film contains n-type and p-type dopants and takes responsibility for dopant conductions. The principle of CVD relies on the gas phase and gas-solid chemical reaction to create thin films. The viscous flow regime of CVD is driven by a pressure gradient. CVD also includes a diffusion component distinct from the surface diffusion of adatoms. In CVD, reactants and products must also diffuse through a boundary layer of stagnant gas that exists next to the substrate. The total number of steps required for CVD film growth are gas phase diffusion of reactants through the boundary layer, adsorption and surface diffusion of adatoms, reactions on the substrate, and gas phase diffusion of products away through the boundary layer. The velocity profile for gas flow is: \delta(x) = \left( \frac \right) \mathrm=\frac, where: * \delta is the thickness, * \mathrm is the Reynolds number, * is the length of the substrate, * at any surface, * \eta is viscosity, * \rho is density. Integrated the from to , it gives the average thickness: \delta = \frac . To keep the reaction balanced, reactants must diffuse through the stagnant boundary layer to reach the substrate. So a thin boundary layer is desirable. According to the equations, increasing vo would result in more wasted reactants. The reactants will not reach the substrate uniformly if the flow becomes turbulent. Another option is to switch to a new carrier gas with lower viscosity or density. The Fick's first law describes diffusion through the boundary layer. As a function of pressure (''p'') and temperature (''T'') in a gas, diffusion is determined. D = D_0 \left(\frac\right) \left(\frac\right)^ , where: * p_0 is the standard pressure, * T_0 is the standard temperature, * D_0 is the standard diffusitivity. The equation tells that increasing the temperature or decreasing the pressure can increase the diffusivity. Fick's first law predicts the flux of the reactants to the substrate and product away from the substrate: J = -D_i \left ( \frac \right ) , where: * x is the thickness \delta, * dc_i is the first reactant's concentration. In ideal gas law pV = nRT, the concentration of the gas is expressed by partial pressure. J = - D_i \left ( \frac \right ) , where * R is the gas constant, * \frac is the partial pressure gradient. As a result, Fick's first law tells us we can use a partial pressure gradient to control the diffusivity and control the growth of thin films of semiconductors. In many realistic situations, the simple Fick's law is not an adequate formulation for the semiconductor problem. It only applies to certain conditions, for example, given the semiconductor boundary conditions: constant source concentration diffusion, limited source concentration, or moving boundary diffusion (where junction depth keeps moving into the substrate).


Invalidity of Fickian diffusion

Even though Fickian diffusion has been used to model diffusion processes in semiconductor manufacturing (including CVD reactors) in early days, it often fails to validate the diffusion in advanced semiconductor nodes (< 90 nm). This mostly stems from the inability of Fickian diffusion to model diffusion processes accurately at molecular level and smaller. In advanced semiconductor manufacturing, it is important to understand the movement at atomic scales, which is failed by continuum diffusion. Today, most semiconductor manufacturers use
random walk In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space. An elementary example of a rand ...
to study and model diffusion processes. This allows us to study the effects of diffusion in a discrete manner to understand the movement of individual atoms, molecules, plasma etc. In such a process, the movements of diffusing species (atoms, molecules, plasma etc.) are treated as a discrete entity, following a random walk through the CVD reactor, boundary layer, material structures etc. Sometimes, the movements might follow a biased-random walk depending on the processing conditions. Statistical analysis is done to understand variation/stochasticity arising from the random walk of the species, which in-turn affects the overall process and electrical variations.


Food production and cooking

The formulation of Fick's first law can explain a variety of complex phenomena in the context of food and cooking: Diffusion of molecules such as ethylene promotes plant growth and ripening, salt and sugar molecules promotes meat brining and marinating, and water molecules promote dehydration. Fick's first law can also be used to predict the changing moisture profiles across a spaghetti noodle as it hydrates during cooking. These phenomena are all about the spontaneous movement of particles of solutes driven by the concentration gradient. In different situations, there is different diffusivity which is a constant. By controlling the concentration gradient, the cooking time, shape of the food, and salting can be controlled.


See also

*
Advection In the fields of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is a ...
* Churchill–Bernstein equation *
Diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
* False diffusion *
Gas exchange Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a b ...
* Mass flux * Maxwell–Stefan diffusion * Nernst–Planck equation *
Osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively permeable membrane, selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of ...


Citations


Further reading

* * * * * – reprinted in * {{refend


External links


Fick's equations, Boltzmann's transformation, etc.
(with figures and animations)
Fick's Second Law
on OpenStax Diffusion Eponymous laws of physics Mathematics in medicine Physical chemistry Statistical mechanics de:Diffusion#Erstes Fick'sches Gesetz