In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, in particular in
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
and
nonlinear analysis, it is possible to define the
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
of a function between two
Fréchet space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces.
They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to ...
s. This notion of differentiation, as it is
Gateaux derivative
In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus. Named after René Gateaux, it is defined for functions between locally convex topological vect ...
between Fréchet spaces, is significantly weaker than the
derivative in a Banach space, even between general
topological vector space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topological vector space is a vector space that is als ...
s. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
hold. In particular, the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the
inverse function theorem
In mathematics, the inverse function theorem is a theorem that asserts that, if a real function ''f'' has a continuous derivative near a point where its derivative is nonzero, then, near this point, ''f'' has an inverse function. The inverse fu ...
called the
Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
.
Mathematical details
Formally, the definition of differentiation is identical to the
Gateaux derivative
In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus. Named after René Gateaux, it is defined for functions between locally convex topological vect ...
. Specifically, let
and
be Fréchet spaces,
be an
open set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line.
In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
, and
be a function. The directional derivative of
in the direction
is defined by
if the limit exists. One says that
is continuously differentiable, or
if the limit exists for all
and the mapping
is a
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
map.
Higher order derivatives are defined inductively via
A function is said to be
if
is continuous. It is
or smooth if it is
for every
Properties
Let
and
be Fréchet spaces. Suppose that
is an open subset of
is an open subset of
and
are a pair of
functions. Then the following properties hold:
*
Fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, inte ...
. If the line segment from
to
lies entirely within
then
* The
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
. For all
and
*
Linearity
In mathematics, the term ''linear'' is used in two distinct senses for two different properties:
* linearity of a '' function'' (or '' mapping'');
* linearity of a '' polynomial''.
An example of a linear function is the function defined by f(x) ...
.
is linear in
More generally, if
is
then
is
multilinear in the
's.
* Taylor's theorem with remainder. Suppose that the line segment between
and
lies entirely within
If
is
then
where the remainder term is given by
* Commutativity of directional derivatives. If
is
then
for every
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
σ of
The proofs of many of these properties rely fundamentally on the fact that it is possible to define the
Riemann integral
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Gö ...
of continuous curves in a Fréchet space.
Smooth mappings
Surprisingly, a mapping between open subset of Fréchet spaces is smooth (infinitely often differentiable) if it maps smooth curves to smooth curves; see
Convenient analysis.
Moreover, smooth curves in spaces of smooth functions are just smooth functions of one variable more.
Consequences in differential geometry
The existence of a chain rule allows for the definition of a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
modeled on a Fréchet space: a
Fréchet manifold. Furthermore, the linearity of the derivative implies that there is an analog of the
tangent bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
for Fréchet manifolds.
Tame Fréchet spaces
Frequently the Fréchet spaces that arise in practical applications of the derivative enjoy an additional property: they are tame. Roughly speaking, a tame Fréchet space is one which is almost a
Banach space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
. On tame spaces, it is possible to define a preferred class of mappings, known as tame maps. On the category of tame spaces under tame maps, the underlying topology is strong enough to support a fully fledged theory of
differential topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
. Within this context, many more techniques from calculus hold. In particular, there are versions of the inverse and implicit function theorems.
See also
*
*
References
*
{{DEFAULTSORT:Differentiation in Frechet spaces
Banach spaces
Differential calculus
Euclidean geometry
Functions and mappings
Generalizations of the derivative
Topological vector spaces