Differentiability Classes
   HOME

TheInfoList



OR:

In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, the smoothness of a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
is a property measured by the number of
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; that is, a function of class C^k is a function that has a th derivative that is continuous in its domain. A function of class C^\infty or C^\infty-function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all
orders Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * H ...
(this implies that all these derivatives are continuous). Generally, the term smooth function refers to a C^-function. However, it may also mean "sufficiently differentiable" for the problem under consideration.


Differentiability classes

Differentiability class is a classification of functions according to the properties of their
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
U on the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
and a function f defined on U with real values. Let ''k'' be a non-negative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. The function f is said to be of differentiability class ''C^k'' if the derivatives f',f'',\dots,f^ exist and are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
on U. If f is k-differentiable on U, then it is at least in the class C^ since f',f'',\dots,f^ are continuous on U. The function f is said to be infinitely differentiable, smooth, or of class C^\infty, if it has derivatives of all orders on U. (So all these derivatives are continuous functions over U.) The function f is said to be of class C^\omega, or '' analytic'', if f is smooth (i.e., f is in the class C^\infty) and its
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
expansion around any point in its domain converges to the function in some
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
of the point. There exist functions that are smooth but not analytic; C^\omega is thus strictly contained in C^\infty.
Bump function In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supp ...
s are examples of functions with this property. To put it differently, the class C^0 consists of all continuous functions. The class C^1 consists of all
differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
s whose derivative is continuous; such functions are called ''continuously differentiable''. Thus, a C^1 function is exactly a function whose derivative exists and is of class C^0. In general, the classes C^k can be defined recursively by declaring C^0 to be the set of all continuous functions, and declaring C^k for any positive integer k to be the set of all differentiable functions whose derivative is in C^. In particular, C^k is contained in C^ for every k>0, and there are examples to show that this containment is strict (C^k \subsetneq C^). The class C^\infty of infinitely differentiable functions, is the intersection of the classes C^k as k varies over the non-negative integers.


Examples


Example: continuous (''C''0) but not differentiable

The function f(x) = \beginx & \mbox x \geq 0, \\ 0 &\text x < 0\end is continuous, but not differentiable at , so it is of class ''C''0, but not of class ''C''1.


Example: finitely-times differentiable (''C'')

For each even integer , the function f(x)=, x, ^ is continuous and times differentiable at all . At , however, f is not times differentiable, so f is of class ''C'', but not of class ''C'' where .


Example: differentiable but not continuously differentiable (not ''C''1)

The function g(x) = \beginx^2\sin & \textx \neq 0, \\ 0 &\textx = 0\end is differentiable, with derivative g'(x) = \begin-\mathord + 2x\sin\left(\tfrac\right) & \textx \neq 0, \\ 0 &\textx = 0.\end Because \cos(1/x) oscillates as → 0, g'(x) is not continuous at zero. Therefore, g(x) is differentiable but not of class ''C''1.


Example: differentiable but not Lipschitz continuous

The function h(x) = \beginx^\sin & \textx \neq 0, \\ 0 &\textx = 0\end is differentiable but its derivative is unbounded on a
compact set In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., i ...
. Therefore, h is an example of a function that is differentiable but not locally
Lipschitz continuous In mathematical analysis, Lipschitz continuity, named after Germany, German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for function (mathematics), functions. Intuitively, a Lipschitz continuous function is limited in h ...
.


Example: analytic (''C'')

The exponential function e^ is analytic, and hence falls into the class ''C''ω (where ω is the smallest
transfinite ordinal In mathematics, transfinite numbers or infinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of in ...
). The
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s are also analytic wherever they are defined, because they are linear combinations of complex exponential functions e^ and e^.


Example: smooth (''C'') but not analytic (''C'')

The
bump function In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supp ...
f(x) = \begine^ & \text , x, < 1, \\ 0 &\text\end is smooth, so of class ''C'', but it is not analytic at , and hence is not of class ''C''ω. The function is an example of a smooth function with
compact support In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed ...
.


Multivariate differentiability classes

A function f:U\subseteq\mathbb^n\to\mathbb defined on an open set U of \mathbb^n is said to be of class C^k on U, for a positive integer k, if all
partial derivatives In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Par ...
\frac(y_1,y_2,\ldots,y_n) exist and are continuous, for every \alpha_1,\alpha_2,\ldots,\alpha_n non-negative integers, such that \alpha=\alpha_1+\alpha_2+\cdots+\alpha_n\leq k, and every (y_1,y_2,\ldots,y_n)\in U. Equivalently, f is of class C^k on U if the k-th order
Fréchet derivative In mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued f ...
of f exists and is continuous at every point of U. The function f is said to be of class C or C^0 if it is continuous on U. Functions of class C^1 are also said to be ''continuously differentiable''. A function f:U\subset\mathbb^n\to\mathbb^m, defined on an open set U of \mathbb^n, is said to be of class C^k on U, for a positive integer k, if all of its components f_i(x_1,x_2,\ldots,x_n)=(\pi_i\circ f)(x_1,x_2,\ldots,x_n)=\pi_i(f(x_1,x_2,\ldots,x_n)) \text i=1,2,3,\ldots,m are of class C^k, where \pi_i are the natural projections \pi_i:\mathbb^m\to\mathbb defined by \pi_i(x_1,x_2,\ldots,x_m)=x_i. It is said to be of class C or C^0 if it is continuous, or equivalently, if all components f_i are continuous, on U.


The space of ''C''''k'' functions

Let D be an open subset of the real line. The set of all C^k real-valued functions defined on D is a Fréchet vector space, with the countable family of
seminorm In mathematics, particularly in functional analysis, a seminorm is like a Norm (mathematics), norm but need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some Absorbing ...
s p_=\sup_\left, f^(x)\ where K varies over an increasing sequence of
compact set In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., i ...
s whose union is D, and m=0,1,\dots,k. The set of C^\infty functions over D also forms a Fréchet space. One uses the same seminorms as above, except that m is allowed to range over all non-negative integer values. The above spaces occur naturally in applications where functions having derivatives of certain orders are necessary; however, particularly in the study of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s, it can sometimes be more fruitful to work instead with the
Sobolev space In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
s.


Continuity

The terms ''parametric continuity'' (''C''''k'') and ''geometric continuity'' (''Gn'') were introduced by Brian Barsky, to show that the smoothness of a curve could be measured by removing restrictions on the
speed In kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a non-negative scalar quantity. Intro ...
, with which the parameter traces out the curve.


Parametric continuity

Parametric continuity (''C''''k'') is a concept applied to
parametric curve In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point (mathematics), point, as Function (mathematics), functions of one or several variable (mathematics), variables called parameters. In the case ...
s, which describes the smoothness of the parameter's value with distance along the curve. A (parametric) curve s: ,1to\mathbb^n is said to be of class ''C''''k'', if \textstyle \frac exists and is continuous on ,1/math>, where derivatives at the end-points 0 and 1 are taken to be one sided derivatives (from the right at 0 and from the left at 1). As a practical application of this concept, a curve describing the motion of an object with a parameter of time must have ''C''1 continuity and its first derivative is differentiable—for the object to have finite acceleration. For smoother motion, such as that of a camera's path while making a film, higher orders of parametric continuity are required.


Order of parametric continuity

The various order of parametric continuity can be described as follows: * C^0: zeroth derivative is continuous (curves are continuous) * C^1: zeroth and first derivatives are continuous * C^2: zeroth, first and second derivatives are continuous * C^n: 0-th through n-th derivatives are continuous


Geometric continuity

A
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
or
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
can be described as having G^n continuity, with n being the increasing measure of smoothness. Consider the segments either side of a point on a curve: *G^0: The curves touch at the join point. *G^1: The curves also share a common
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
direction at the join point. *G^2: The curves also share a common center of curvature at the join point. In general, G^n continuity exists if the curves can be reparameterized to have C^n (parametric) continuity. A reparametrization of the curve is geometrically identical to the original; only the parameter is affected. Equivalently, two vector functions f(t) and g(t) such that f(1)=g(0) have G^n continuity at the point where they meet if they satisfy equations known as Beta-constraints. For example, the Beta-constraints for G^4 continuity are: : \begin g^(0) & = \beta_1 f^(1) \\ g^(0) & = \beta_1^2 f^(1) + \beta_2 f^(1) \\ g^(0) & = \beta_1^3 f^(1) + 3\beta_1\beta_2 f^(1) +\beta_3 f^(1) \\ g^(0) & = \beta_1^4 f^(1) + 6\beta_1^2\beta_2 f^(1) +(4\beta_1\beta_3+3\beta_2^2) f^(1) +\beta_4 f^(1) \\ \end where \beta_2, \beta_3, and \beta_4 are arbitrary, but \beta_1 is constrained to be positive. In the case n=1, this reduces to f'(1)\neq0 and f'(1) = kg'(0), for a scalar k>0 (i.e., the direction, but not necessarily the magnitude, of the two vectors is equal). While it may be obvious that a curve would require G^1 continuity to appear smooth, for good
aesthetics Aesthetics (also spelled esthetics) is the branch of philosophy concerned with the nature of beauty and taste (sociology), taste, which in a broad sense incorporates the philosophy of art.Slater, B. H.Aesthetics ''Internet Encyclopedia of Ph ...
, such as those aspired to in
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and construction, constructi ...
and
sports car A sports car is a type of automobile that is designed with an emphasis on dynamic performance, such as Automobile handling, handling, acceleration, top speed, the thrill of driving, and Auto racing, racing capability. Sports cars originated in ...
design, higher levels of geometric continuity are required. For example, reflections in a car body will not appear smooth unless the body has G^2 continuity. A (with ninety degree circular arcs at the four corners) has G^1 continuity, but does not have G^2 continuity. The same is true for a , with octants of a sphere at its corners and quarter-cylinders along its edges. If an editable curve with G^2 continuity is required, then cubic splines are typically chosen; these curves are frequently used in
industrial design Industrial design is a process of design applied to physical Product (business), products that are to be manufactured by mass production. It is the creative act of determining and defining a product's form and features, which takes place in adva ...
.


Other concepts


Relation to analyticity

While all
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
s are "smooth" (i.e. have all derivatives continuous) on the set on which they are analytic, examples such as
bump function In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supp ...
s (mentioned above) show that the converse is not true for functions on the reals: there exist smooth real functions that are not analytic. Simple examples of functions that are smooth but not analytic at any point can be made by means of
Fourier series A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
; another example is the
Fabius function In mathematics, the Fabius function is an example of an smoothness, infinitely differentiable function that is nowhere analytic function, analytic, found by . This function satisfies the initial condition f(0) = 0, the symmetry condition f(1-x ...
. Although it might seem that such functions are the exception rather than the rule, it turns out that the analytic functions are scattered very thinly among the smooth ones; more rigorously, the analytic functions form a meagre subset of the smooth functions. Furthermore, for every open subset ''A'' of the real line, there exist smooth functions that are analytic on ''A'' and nowhere else. It is useful to compare the situation to that of the ubiquity of
transcendental number In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . ...
s on the real line. Both on the real line and the set of smooth functions, the examples we come up with at first thought (algebraic/rational numbers and analytic functions) are far better behaved than the majority of cases: the transcendental numbers and nowhere analytic functions have full measure (their complements are meagre). The situation thus described is in marked contrast to complex differentiable functions. If a complex function is differentiable just once on an open set, it is both infinitely differentiable and analytic on that set.


Smooth partitions of unity

Smooth functions with given closed support are used in the construction of smooth partitions of unity (see ''
partition of unity In mathematics, a partition of unity on a topological space is a Set (mathematics), set of continuous function (topology), continuous functions from to the unit interval ,1such that for every point x\in X: * there is a neighbourhood (mathem ...
'' and
topology glossary This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also funda ...
); these are essential in the study of
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
s, for example to show that
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s can be defined globally starting from their local existence. A simple case is that of a ''
bump function In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supp ...
'' on the real line, that is, a smooth function ''f'' that takes the value 0 outside an interval 'a'',''b''and such that f(x) > 0 \quad \text \quad a < x < b.\, Given a number of overlapping intervals on the line, bump functions can be constructed on each of them, and on semi-infinite intervals (-\infty, c] and , +\infty) to cover the whole line, such that the sum of the functions is always 1. From what has just been said, partitions of unity do not apply to holomorphic functions; their different behavior relative to existence and analytic continuation is one of the roots of Sheaf (mathematics), sheaf theory. In contrast, sheaves of smooth functions tend not to carry much topological information.


Smooth functions on and between manifolds

Given a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
M, of dimension m, and an
atlas An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets. Atlases have traditio ...
\mathfrak = \_\alpha, then a map f:M\to \R is smooth on M if for all p \in M there exists a chart (U, \phi) \in \mathfrak, such that p \in U, and f \circ \phi^ : \phi(U) \to \R is a smooth function from a neighborhood of \phi(p) in \R^m to \R (all partial derivatives up to a given order are continuous). Smoothness can be checked with respect to any
chart A chart (sometimes known as a graph) is a graphics, graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". A chart can repres ...
of the atlas that contains p, since the smoothness requirements on the transition functions between charts ensure that if f is smooth near p in one chart it will be smooth near p in any other chart. If F : M \to N is a map from M to an n-dimensional manifold N, then F is smooth if, for every p \in M, there is a chart (U,\phi) containing p, and a chart (V, \psi) containing F(p) such that F(U) \subset V, and \psi \circ F \circ \phi^ : \phi(U) \to \psi(V) is a smooth function from \R^n. Smooth maps between manifolds induce linear maps between
tangent space In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
s: for F : M \to N, at each point the
pushforward The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things. * Pushforward (differential), the differential of a smooth map between manifolds, and the "pushforward" op ...
(or differential) maps tangent vectors at p to tangent vectors at F(p): F_ : T_p M \to T_N, and on the level of the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
, the pushforward is a
vector bundle homomorphism In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
: F_* : TM \to TN. The dual to the pushforward is the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: ...
, which "pulls" covectors on N back to covectors on M, and k-forms to k-forms: F^* : \Omega^k(N) \to \Omega^k(M). In this way smooth functions between manifolds can transport local data, like
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s and
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
s, from one manifold to another, or down to Euclidean space where computations like integration are well understood. Preimages and pushforwards along smooth functions are, in general, not manifolds without additional assumptions. Preimages of regular points (that is, if the differential does not vanish on the preimage) are manifolds; this is the preimage theorem. Similarly, pushforwards along embeddings are manifolds.


Smooth functions between subsets of manifolds

There is a corresponding notion of smooth map for arbitrary subsets of manifolds. If f : X \to Y is a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
whose domain and
range Range may refer to: Geography * Range (geographic), a chain of hills or mountains; a somewhat linear, complex mountainous or hilly area (cordillera, sierra) ** Mountain range, a group of mountains bordered by lowlands * Range, a term used to i ...
are subsets of manifolds X \subseteq M and Y \subseteq N respectively. f is said to be smooth if for all x \in X there is an open set U \subseteq M with x \in U and a smooth function F : U \to N such that F(p) = f(p) for all p \in U \cap X.


See also

* * * * * * * * (number theory) * * * Sobolev mapping


References

{{Functions navbox Smooth functions