The limit of detection (LOD or LoD) is the lowest signal, or the lowest corresponding quantity to be determined (or extracted) from the signal, that can be observed with a sufficient degree of confidence or
statistical significance
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the ...
. However, the exact threshold (level of decision) used to decide when a signal
significantly emerges above the continuously fluctuating background noise remains arbitrary and is a matter of policy and often of debate among scientists, statisticians and regulators depending on the stakes in different fields.
Significance in analytical chemistry
In
analytical chemistry
Analytical skill, Analytical chemistry studies and uses instruments and methods to Separation process, separate, identify, and Quantification (science), quantify matter. In practice, separation, identification or quantification may constitute t ...
, the detection limit, lower limit of detection, also termed LOD for limit of detection or analytical sensitivity (not to be confused with
statistical sensitivity), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a ''
blank value'') with a stated
confidence level (generally 99%).
The detection limit is estimated from the
mean
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
of the blank, the
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
of the blank, the slope (
analytical sensitivity) of the
calibration plot and a defined
confidence factor (e.g. 3.2 being the most accepted value for this arbitrary value).
Another consideration that affects the detection limit is the adequacy and the
accuracy
Accuracy and precision are two measures of ''observational error''.
''Accuracy'' is how close a given set of measurements (observations or readings) are to their ''true value''.
''Precision'' is how close the measurements are to each other.
The ...
of the
model
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , .
Models can be divided in ...
used to predict concentration from the raw analytical signal.
As a typical example, from a
calibration plot following a
linear equation
In mathematics, a linear equation is an equation that may be put in the form
a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
taken here as the simplest possible model:
:
where,
corresponds to the signal measured (e.g. voltage, luminescence, energy, etc.), "" the value in which the straight line cuts the ordinates axis, "" the sensitivity of the system (i.e., the slope of the line, or the function relating the measured signal to the quantity to be determined) and "" the value of the quantity (e.g. temperature, concentration, pH, etc.) to be determined from the signal
, the LOD for "" is calculated as the "" value in which
equals to the average value of blanks "" plus "" times its standard deviation "" (or, if zero, the standard deviation corresponding to the lowest value measured) where "" is the chosen confidence value (e.g. for a confidence of 95% it can be considered = 3.2, determined from the limit of blank).
Thus, in this didactic example:
There are a number of concepts derived from the detection limit that are commonly used. These include the instrument detection limit (IDL), the method detection limit (MDL), the practical quantitation limit (PQL), and the limit of quantitation (LOQ). Even when the same terminology is used, there can be differences in the LOD according to nuances of what definition is used and what type of noise contributes to the measurement and calibration.
The figure below illustrates the relationship between the blank, the ''limit of detection'' (LOD), and the ''limit of quantitation'' (LOQ) by showing the
probability density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
for
normally distributed
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real number, real-valued random variable. The general form of its probability density function is
f(x ...
measurements at the blank, at the LOD defined as 3 ×
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
of the blank, and at the LOQ defined as 10 × standard deviation of the blank. (The identical spread along Abscissa of these two functions is problematic.) For a signal at the LOD, the
alpha error (probability of
false positive
A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test resu ...
) is small (1%). However, the
beta error (probability of a
false negative) is 50% for a sample that has a concentration at the LOD (red line). This means a sample could contain an impurity at the LOD, but there is a 50% chance that a measurement would give a result less than the LOD. At the LOQ (blue line), there is minimal chance of a false negative.
Instrument detection limit
Most
analytical instruments produce a signal even when a blank (
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
without
analyte
An analyte, component (in clinical chemistry), titrand (in titrations), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The remainder of the sample is called the matrix. The procedure ...
) is analyzed. This signal is referred to as the noise level. The instrument detection limit (IDL) is the analyte concentration that is required to produce a signal greater than three times the
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
of the noise level. This may be practically measured by analyzing 8 or more standards at the estimated IDL then calculating the
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
from the measured concentrations of those standards.
The detection limit (according to
IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
) is the smallest
concentration
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
, or the smallest absolute
amount, of analyte that has a signal statistically significantly larger than the signal arising from the repeated measurements of a reagent blank.
Mathematically, the analyte's signal at the detection limit (
) is given by:
:
where,
is the
mean value
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
of the signal for a reagent blank measured multiple times, and
is the known
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
for the reagent blank's signal.
Other approaches for defining the detection limit have also been developed. In
atomic absorption spectrometry usually the detection limit is determined for a certain element by analyzing a diluted solution of this element and recording the corresponding
absorbance at a given
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
. The measurement is repeated 10 times. The 3σ of the recorded absorbance signal can be considered as the detection limit for the specific element under the experimental conditions: selected wavelength, type of flame or graphite oven, chemical matrix, presence of
interfering substances, instrument... .
Method detection limit
Often there is more to the analytical method than just performing a
reaction
Reaction may refer to a process or to a response to an action, event, or exposure.
Physics and chemistry
*Chemical reaction
*Nuclear reaction
*Reaction (physics), as defined by Newton's third law
* Chain reaction (disambiguation)
Biology and ...
or submitting the analyte to direct analysis. Many analytical methods developed in the laboratory, especially these involving the use of a delicate scientific instrument, require a
sample preparation, or a pretreatment of the samples prior to being analysed. For example, it might be necessary to heat a sample that is to be analyzed for a particular metal with the addition of acid first (digestion process). The sample may also be diluted or concentrated prior to analysis by means of a given instrument. Additional steps in an analysis method add additional opportunities for errors. Since detection limits are defined in terms of errors, this will naturally increase the measured detection limit. This "''global''" detection limit (including all the steps of the analysis method) is called the method detection limit (MDL). The practical way for determining the MDL is to analyze seven samples of concentration near the expected limit of detection. The
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
is then determined. The one-sided
Student's t-distribution
In probability theory and statistics, Student's distribution (or simply the distribution) t_\nu is a continuous probability distribution that generalizes the Normal distribution#Standard normal distribution, standard normal distribu ...
is determined and multiplied versus the determined
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
. For seven samples (with six degrees of freedom) the t value for a 99%
confidence level is 3.14. Rather than performing the complete analysis of seven identical samples, if the Instrument Detection Limit is known, the MDL may be estimated by multiplying the Instrument Detection Limit, or Lower Level of Detection, by the dilution prior to analyzing the sample solution with the instrument. This estimation, however, ignores any uncertainty that arises from performing the sample preparation and will therefore probably underestimate the true MDL.
Limit of each model
The issue of limit of detection, or limit of quantification, is encountered in all scientific disciplines. This explains the variety of definitions and the diversity of juridiction specific solutions developed to address preferences. In the simplest cases as in nuclear and chemical measurements, definitions and approaches have probably received the clearer and the simplest solutions. In biochemical tests and in biological experiments depending on many more intricate factors, the situation involving false positive and false negative responses is more delicate to handle. In many other disciplines such as
geochemistry
Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the e ...
,
seismology
Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic ...
,
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
,
dendrochronology
Dendrochronology (or tree-ring dating) is the scientific method of chronological dating, dating tree rings (also called growth rings) to the exact year they were formed in a tree. As well as dating them, this can give data for dendroclimatology, ...
,
climatology
Climatology (from Greek , ''klima'', "slope"; and , '' -logia'') or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospher ...
,
life sciences
This list of life sciences comprises the branches of science that involve the scientific study of life – such as microorganisms, plants, and animals including human beings. This science is one of the two major branches of natural science, ...
in general, and in many other fields impossible to enumerate extensively, the problem is wider and deals with
signal
A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology.
In ...
extraction out of a
background of noise. It involves complex
statistical analysis
Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical analysis infers properties of ...
procedures and therefore it also depends on the
model
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , .
Models can be divided in ...
s used,
the hypotheses and the simplifications or approximations to be made to handle and manage
uncertainties. When the data resolution is poor and different signals overlap, different
deconvolution procedures are applied to extract parameters. The use of different
phenomenological, mathematical and
statistical model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repre ...
s may also complicate the exact mathematical definition of limit of detection and how it is calculated. This explains why it is not easy to come to a general consensus, if any, about the precise mathematical definition of the expression of limit of detection. However, one thing is clear: it always requires a sufficient number of data (or accumulated data) and a rigorous
statistical analysis
Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical analysis infers properties of ...
to render better signification statistically.
Limit of quantification
The limit of quantification (LoQ, or LOQ) is the lowest value of a signal (or concentration, activity, response...) that can be quantified with acceptable precision and accuracy.
The LoQ is the limit at which the difference between two distinct signals / values can be discerned with a reasonable certainty, ''i.e.'', when the signal is statistically different from the background. The LoQ may be drastically different between laboratories, so another detection limit is commonly used that is referred to as the Practical Quantification Limit (PQL).
See also
*
*
*
*
*
*
*
*
*
*
References
Further reading
*
*
*
*
*
*
External links
*
*
*
*
*
Downloads of articles (a.o. harmonization of concepts by ISO and IUPAC) and an extensive list of references
{{Authority control
Analytical chemistry
Measurement
Background radiation