Dedekind Completion
   HOME

TheInfoList



OR:

Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
who made important contributions to
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
,
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
(particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s through the notion of
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...
. He is also considered a pioneer in the development of modern
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
and of the
philosophy of mathematics Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathem ...
known as ''
logicism In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or al ...
''.


Life

Dedekind's father was Julius Levin Ulrich Dedekind, an administrator of Collegium Carolinum in
Braunschweig Braunschweig () or Brunswick ( ; from Low German , local dialect: ) is a List of cities and towns in Germany, city in Lower Saxony, Germany, north of the Harz Mountains at the farthest navigable point of the river Oker, which connects it to the ...
. His mother was Caroline Henriette Dedekind (née Emperius), the daughter of a professor at the Collegium. Richard Dedekind had three older siblings. As an adult, he never used the names Julius Wilhelm. He was born in Braunschweig (often called "Brunswick" in English), which is where he lived most of his life and died. His body rests at
Braunschweig Main Cemetery The Braunschweig Main Cemetery () on Helmstedter street is a historic, church-owned and operated Lutheran cemetery located in the city of Braunschweig, in Germany. With a land area of approximately 43 ha, it is the second largest church-owned Chri ...
. He first attended the Collegium Carolinum in 1848 before transferring to the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen (, commonly referred to as Georgia Augusta), is a Public university, public research university in the city of Göttingen, Lower Saxony, Germany. Founded in 1734 ...
in 1850. There, Dedekind was taught
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
by professor
Moritz Stern Moritz Abraham Stern (29 June 1807 – 30 January 1894) was a German mathematician. Stern became ''Ordinarius'' (full professor) at Göttingen University in 1858, succeeding Carl Friedrich Gauss. Stern was the first Jewish full professor at a Germ ...
.
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
was still teaching, although mostly at an elementary level, and Dedekind became his last student. Dedekind received his doctorate in 1852, for a thesis titled ''Über die Theorie der Eulerschen Integrale'' ("On the Theory of Eulerian integrals"). This thesis did not display the talent evident in Dedekind's subsequent publications. At that time, the
University of Berlin The Humboldt University of Berlin (, abbreviated HU Berlin) is a public research university in the central borough of Mitte in Berlin, Germany. The university was established by Frederick William III on the initiative of Wilhelm von Humbol ...
, not
Göttingen Göttingen (, ; ; ) is a college town, university city in Lower Saxony, central Germany, the Capital (political), capital of Göttingen (district), the eponymous district. The River Leine runs through it. According to the 2022 German census, t ...
, was the main facility for mathematical research in Germany. Thus Dedekind went to Berlin for two years of study, where he and
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
were contemporaries; they were both awarded the
habilitation Habilitation is the highest university degree, or the procedure by which it is achieved, in Germany, France, Italy, Poland and some other European and non-English-speaking countries. The candidate fulfills a university's set criteria of excelle ...
in 1854. Dedekind returned to Göttingen to teach as a ''
Privatdozent ''Privatdozent'' (for men) or ''Privatdozentin'' (for women), abbreviated PD, P.D. or Priv.-Doz., is an academic title conferred at some European universities, especially in German-speaking countries, to someone who holds certain formal qualifi ...
'', giving courses on
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
and
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
. He studied for a while with
Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory o ...
, and they became good friends. Because of lingering weaknesses in his mathematical knowledge, he studied elliptic and abelian functions. Yet he was also the first at Göttingen to lecture concerning
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
. About this time, he became one of the first people to understand the importance of the notion of groups for
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
and
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
. In 1858, he began teaching at the
Polytechnic A polytechnic is an educational institution that primarily focuses on vocational education, applied sciences, and career pathways. They are sometimes referred to as ''institutes of technology'', ''vocational institutes'', or ''universities of app ...
school in
Zürich Zurich (; ) is the list of cities in Switzerland, largest city in Switzerland and the capital of the canton of Zurich. It is in north-central Switzerland, at the northwestern tip of Lake Zurich. , the municipality had 448,664 inhabitants. The ...
(now ETH Zürich). When the Collegium Carolinum was upgraded to a ''
Technische Hochschule A ''Technische Hochschule'' (, plural: ''Technische Hochschulen'', abbreviated ''TH'') is a type of university focusing on engineering sciences in Germany. Previously, it also existed in Austria, Switzerland, the Netherlands (), and Finland (, ) ...
'' (Institute of Technology) in 1862, Dedekind returned to his native Braunschweig, where he spent the rest of his life, teaching at the Institute. He retired in 1894, but did occasional teaching and continued to publish. He never married, instead living with his sister Julia. Dedekind was elected to the Academies of Berlin (1880) and Rome, and to the
French Academy of Sciences The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific method, scientific research. It was at the forefron ...
(1900). He received honorary doctorates from the universities of
Oslo Oslo ( or ; ) is the capital and most populous city of Norway. It constitutes both a county and a municipality. The municipality of Oslo had a population of in 2022, while the city's greater urban area had a population of 1,064,235 in 2022 ...
,
Zurich Zurich (; ) is the list of cities in Switzerland, largest city in Switzerland and the capital of the canton of Zurich. It is in north-central Switzerland, at the northwestern tip of Lake Zurich. , the municipality had 448,664 inhabitants. The ...
, and
Braunschweig Braunschweig () or Brunswick ( ; from Low German , local dialect: ) is a List of cities and towns in Germany, city in Lower Saxony, Germany, north of the Harz Mountains at the farthest navigable point of the river Oker, which connects it to the ...
.


Work

While teaching calculus for the first time at the
Polytechnic A polytechnic is an educational institution that primarily focuses on vocational education, applied sciences, and career pathways. They are sometimes referred to as ''institutes of technology'', ''vocational institutes'', or ''universities of app ...
school, Dedekind developed the notion now known as a
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...
(German: ''Schnitt''), now a standard definition of the real numbers. The idea of a cut is that an
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
divides the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s into two classes ( sets), with all the numbers of one class (greater) being strictly greater than all the numbers of the other (lesser) class. For example, the
square root of 2 The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Te ...
defines all the nonnegative numbers whose squares are less than 2 and the negative numbers into the lesser class, and the positive numbers whose squares are greater than 2 into the greater class. Every location on the number line continuum contains either a rational or an irrational number. Thus there are no empty locations, gaps, or discontinuities. Dedekind published his thoughts on irrational numbers and Dedekind cuts in his pamphlet "Stetigkeit und irrationale Zahlen" ("Continuity and irrational numbers"); in modern terminology, ''Vollständigkeit'', '' completeness''. Dedekind defined two sets to be "similar" when there exists a
one-to-one correspondence In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
between them. He invoked similarity to give the first precise definition of an
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
: a set is infinite when it is "similar to a proper part of itself," in modern terminology, is
equinumerous In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', ...
to one of its proper subsets. Thus the set N of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s can be shown to be similar to the subset of N whose members are the
square In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
s of every member of N, (N N2): N    1  2  3  4  5  6  7  8  9 10 ...                       N2   1  4  9 16 25 36 49 64 81 100 ... Dedekind's work in this area anticipated that of
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
, who is commonly considered the founder of
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. Likewise, his contributions to the
foundations of mathematics Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
anticipated later works by major proponents of
logicism In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or al ...
, such as
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
and
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
. Dedekind edited the collected works of Lejeune Dirichlet,
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
, and
Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first ...
. Dedekind's study of Lejeune Dirichlet's work led him to his later study of
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
s and ideals. In 1863, he published Lejeune Dirichlet's lectures on
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
as ''
Vorlesungen über Zahlentheorie (; German for ''Lectures on Number Theory'') is the name of several different textbooks of number theory. The best known was written by Peter Gustav Lejeune Dirichlet and Richard Dedekind, and published in 1863. Others were written by Leopold K ...
'' ("Lectures on Number Theory") about which it has been written that: The 1879 and 1894 editions of the ''Vorlesungen'' included supplements introducing the notion of an ideal, fundamental to ring theory. (The word "Ring", introduced later by
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
, does not appear in Dedekind's work.) Dedekind defined an ideal as a subset of a set of numbers, composed of
algebraic integer In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s that satisfy polynomial equations with
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
coefficients. The concept underwent further development in the hands of Hilbert and, especially, of
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
. Ideals generalize Ernst Eduard Kummer's
ideal number In number theory, an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the r ...
s, devised as part of Kummer's 1843 attempt to prove
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases ...
. (Thus Dedekind can be said to have been Kummer's most important disciple.) In an 1882 article, Dedekind and
Heinrich Martin Weber Heinrich Martin Weber (5 March 1842, Heidelberg, German Confederation, Germany – 17 May 1913, Straßburg, Alsace-Lorraine, German Empire, now Strasbourg, France) was a German mathematician. Weber's main work was in algebra, number theory, ...
applied ideals to
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
s, giving an algebraic proof of the
Riemann–Roch theorem The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It re ...
. In 1888, he published a short monograph titled ''Was sind und was sollen die Zahlen?'' ("What are numbers and what are they good for?" Ewald 1996: 790), which included his definition of an
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
. He also proposed an
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
atic foundation for the natural numbers, whose primitive notions were the number
one 1 (one, unit, unity) is a number, numeral, and glyph. It is the first and smallest positive integer of the infinite sequence of natural numbers. This fundamental property has led to its unique uses in other fields, ranging from science to sp ...
and the
successor function In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor functio ...
. The next year,
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
, citing Dedekind, formulated an equivalent but simpler set of axioms, now the standard ones. Dedekind made other contributions to
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
. For instance, around 1900, he wrote the first papers on
modular lattice In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self- dual condition, ;Modular law: implies where are arbitrary elements in the lattice,  ≤  is the partial order, and & ...
s. In 1872, while on holiday in
Interlaken Interlaken (; lit.: ''between lakes'') is a Swiss town and municipality in the Interlaken-Oberhasli administrative district in the canton of Bern. It is an important and well-known tourist destination in the Bernese Oberland region of the Swiss ...
, Dedekind met
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
. Thus began an enduring relationship of mutual respect, and Dedekind became one of the first mathematicians to admire Cantor's work concerning infinite sets, proving a valued ally in Cantor's disputes with
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ...
, who was philosophically opposed to Cantor's transfinite numbers.


Bibliography

Primary literature in English: *1890. "Letter to Keferstein" in
Jean van Heijenoort Jean Louis Maxime van Heijenoort ( ; ; ; July 23, 1912 – March 29, 1986) was a historian of mathematical logic. He was also a personal secretary to Leon Trotsky from 1932 to 1939, and an American Trotskyist until 1947. Life Van Heijenoort wa ...
, 1967. ''A Source Book in Mathematical Logic, 1879–1931''. Harvard Univ. Press: 98–103. * 1963 (1901). ''Essays on the Theory of Numbers''. Beman, W. W., ed. and trans. Dover. Contains English translations of
Stetigkeit und irrationale Zahlen
' and ''Was sind und was sollen die Zahlen?'' * 1996. ''Theory of Algebraic Integers''. Stillwell, John, ed. and trans. Cambridge Uni. Press. A translation of ''Über die Theorie der ganzen algebraischen Zahlen''. * Ewald, William B., ed., 1996. ''From Kant to Hilbert: A Source Book in the Foundations of Mathematics'', 2 vols. Oxford Uni. Press. **1854. "On the introduction of new functions in mathematics," 754–61. **1872. "Continuity and irrational numbers," 765–78. (translation of ''Stetigkeit...'') **1888. ''What are numbers and what should they be?'', 787–832. (translation of ''Was sind und...'') **1872–82, 1899. Correspondence with Cantor, 843–77, 930–40. Primary literature in German:
Gesammelte mathematische Werke
(Complete mathematical works, Vol. 1–3). Retrieved 5 August 2009.


Pronunciation

dehdehkhind is the way a German would pronounce Dedekind.


See also

* List of things named after Richard Dedekind *
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...
*
Dedekind domain In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily un ...
*
Dedekind eta function In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string ...
*
Dedekind-infinite set In mathematics, a set ''A'' is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset ''B'' of ''A'' is equinumerous to ''A''. Explicitly, this means that there exists a bijective function from ''A'' onto s ...
* Dedekind number * Dedekind psi function * Dedekind sum *
Dedekind zeta function In mathematics, the Dedekind zeta function of an algebraic number field ''K'', generally denoted ζ''K''(''s''), is a generalization of the Riemann zeta function (which is obtained in the case where ''K'' is the field of rational numbers Q). It ca ...
*
Ideal (ring theory) In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even n ...


Notes


References

*


Further reading

* Edwards, H. M., 1983, "Dedekind's invention of ideals," ''Bull. London Math. Soc. 15'': 8–17. * *Gillies, Douglas A., 1982. ''Frege, Dedekind, and Peano on the foundations of arithmetic''. Assen, Netherlands: Van Gorcum. *Ferreirós, José, 2007. ''Labyrinth of Thought: A history of set theory and its role in modern mathematics''. Basel: Birkhäuser, chap. 3, 4 and 7. *
Ivor Grattan-Guinness Ivor Owen Grattan-Guinness (23 June 1941 – 12 December 2014) was a historian of mathematics and logic. Life Grattan-Guinness was born in Bakewell, England; his father was a mathematics teacher and educational administrator. He gained his ...
, 2000. ''The Search for Mathematical Roots 1870–1940''. Princeton Uni. Press. There is a
online bibliography
of the secondary literature on Dedekind. Also consult Stillwell's "Introduction" to Dedekind (1996).


External links

* * *
Dedekind, Richard, ''Essays on the Theory of Numbers.'' Open Court Publishing Company, Chicago, 1901.
at the
Internet Archive The Internet Archive is an American 501(c)(3) organization, non-profit organization founded in 1996 by Brewster Kahle that runs a digital library website, archive.org. It provides free access to collections of digitized media including web ...
* Dedekind's Contributions to the Foundations of Mathematics http://plato.stanford.edu/entries/dedekind-foundations/. {{DEFAULTSORT:Dedekind, Julius Wilhelm Richard 1831 births 1916 deaths 19th-century German mathematicians 19th-century German philosophers 20th-century German mathematicians Academic staff of ETH Zurich Academic staff of TU Braunschweig University of Göttingen alumni Academic staff of the University of Göttingen Humboldt University of Berlin alumni German number theorists Algebraists Scientists from Braunschweig People from the Duchy of Brunswick Members of the French Academy of Sciences Philosophers of mathematics Mathematicians from the German Empire