In
mathematical physics
Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
, de Sitter invariant special relativity is the speculative idea that the fundamental
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
is the
indefinite orthogonal group
In mathematics, the indefinite orthogonal group, is the Lie group of all linear transformations of an ''n''-dimension (vector space), dimensional real number, real vector space that leave invariant a nondegenerate form, nondegenerate, symmetric bi ...
SO(4,1), that of
de Sitter space
In mathematical physics, ''n''-dimensional de Sitter space (often denoted dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canonical Rie ...
. In the standard theory of
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, de Sitter space is a highly symmetrical special
vacuum solution
In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or n ...
, which requires a
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is a coefficient that Albert Einstein initially added to his field equations of general rel ...
or the
stress–energy of a constant
scalar field
In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical ...
to sustain.
The idea of de Sitter invariant relativity is to require that the laws of physics are not fundamentally invariant under the
Poincaré group
The Poincaré group, named after Henri Poincaré (1905), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our unde ...
of
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
, but under the symmetry group of de Sitter space instead. With this assumption, empty space automatically has de Sitter symmetry, and what would normally be called the cosmological constant in general relativity becomes a fundamental dimensional parameter describing the symmetry structure of spacetime.
First proposed by
Luigi Fantappiè
Luigi Fantappiè (15 September 1901 – 28 July 1956) was an Italian mathematician, known for work in mathematical analysis and for creating the theory of analytic functionals: he was a student and follower of Vito Volterra. Later in life, he p ...
in 1954, the theory remained obscure until it was rediscovered in 1968 by
Henri Bacry and
Jean-Marc Lévy-Leblond. In 1972,
Freeman Dyson
Freeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physics, theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrix, random matrices, math ...
popularized it as a hypothetical road by which mathematicians could have guessed part of the structure of general relativity before it was discovered.
[
] The discovery of the
accelerating expansion of the universe has led to a revival of interest in de Sitter invariant theories, in conjunction with other speculative proposals for new physics, like
doubly special relativity.
Introduction
De Sitter suggested that spacetime curvature might not be due solely to gravity but he did not give any mathematical details of how this could be accomplished. In 1968 Henri Bacry and
Jean-Marc Lévy-Leblond showed that the de Sitter group was the most general group compatible with isotropy, homogeneity and boost invariance.
[ Later, Freeman Dyson][ advocated this as an approach to making the mathematical structure of general relativity more self-evident.
Minkowski's unification of space and time within ]special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
replaces the Galilean group of Newtonian mechanics
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:
# A body r ...
with the Lorentz group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physi ...
. This is called a unification of space and time because the Lorentz group is simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by John ...
, while the Galilean group is a semi-direct product of rotations and Galilean boosts. This means that the Lorentz group mixes up space and time such that they cannot be disentangled, while the Galilean group treats time as a parameter with different units of measurement than space.
An analogous thing can be made to happen with the ordinary rotation group in three dimensions. If you imagine a nearly flat world, one in which pancake-like creatures wander around on a pancake flat world, their conventional unit of height might be the micrometre
The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
(μm), since that is how high typical structures are in their world, while their unit of distance could be the metre, because that is their body's horizontal extent. Such creatures would describe the basic symmetry of their world as SO(2)
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
\mathbb T = \.
The circle g ...
, being the known rotations in the horizontal (x–y) plane. Later on, they might discover rotations around the x- and y-axes—and in their everyday experience such rotations might always be by an infinitesimal angle, so that these rotations would effectively commute with each other.
The rotations around the horizontal axes would tilt objects by an infinitesimal amount. The tilt in the x–z plane (the "x-tilt") would be one parameter, and the tilt in the y–z plane (the "y-tilt") another. The symmetry group of this pancake world is then SO(2) semidirect product with R2, meaning that a two-dimensional rotation plus two extra parameters, the x-tilt and the y-tilt. The reason it is a semidirect product is that, when you rotate, the x-tilt and the y-tilt rotate into each other, since they form a vector
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Disease vector, an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematics a ...
and not two scalars. In this world, the difference in height between two objects at the same x, y would be a rotationally invariant quantity unrelated to length and width. The z-coordinate is effectively separate from x and y.
Eventually, experiments at large angles would convince the creatures that the symmetry of the world is SO(3)
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition.
By definition, a rotation about the origin is a ...
. Then they would understand that z is really the same as x and y, since they can be mixed up by rotations. The SO(2) semidirect product R2 limit would be understood as the limit that the free parameter ''μ'', the ratio of the height range ''μm'' to the length range ''m'', approaches 0. The Lorentz group is analogous—it is a simple group that turns into the Galilean group when the time range is made long compared to the space range, or where velocities may be regarded as infinitesimal, or equivalently, may be regarded as the limit , where relativistic effects become observable "as good as at infinite velocity".
The symmetry group of special relativity is not entirely simple, due to translations. The Lorentz group is the set of the transformations that keep the origin fixed, but translations are not included. The full Poincaré group is the semi-direct product of translations with the Lorentz group. If translations are to be similar to elements of the Lorentz group, then as boosts are non-commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, translations
Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transl ...
would also be non-commutative.
In the pancake world, this would manifest if the creatures were living on an enormous sphere rather than on a plane. In this case, when they wander around their sphere, they would eventually come to realize that translations are not entirely separate from rotations, because if they move around on the surface of a sphere, when they come back to where they started, they find that they have been rotated by the holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence ...
of parallel transport
In differential geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on ...
on the sphere. If the universe is the same everywhere (homogeneous) and there are no preferred directions (isotropic), then there are not many options for the symmetry group: they either live on a flat plane, or on a sphere with a constant positive curvature, or on a Lobachevski plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
with constant negative curvature. If they are not living on the plane, they can describe positions using dimensionless angles, the same parameters that describe rotations, so that translations and rotations are nominally unified.
In relativity, if translations mix up nontrivially with rotations, but the universe is still homogeneous
Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
and isotropic
In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
, the only option is that spacetime has a uniform scalar curvature. If the curvature is positive, the analog of the sphere case for the two-dimensional creatures, the spacetime is de Sitter space and its symmetry group is the de Sitter group rather than the Poincaré group.
De Sitter special relativity postulates that the empty space has de Sitter symmetry as a fundamental law of nature. This means that spacetime is slightly curved even in the absence of matter or energy. This residual curvature
In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
implies a positive cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is a coefficient that Albert Einstein initially added to his field equations of general rel ...
to be determined by observation. Due to the small magnitude of the constant, special relativity with its Poincaré group is indistinguishable from de Sitter space for most practical purposes.
Modern proponents of this idea, such as S. Cacciatori, V. Gorini and A. Kamenshchik,[
] have reinterpreted this theory as physics, not just mathematics. They postulate that the acceleration of the expansion of the universe is not entirely due to vacuum energy
Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.
The effects of vacuum energy can be experiment ...
, but at least partly due to the kinematics of the de Sitter group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
, which would replace the Poincaré group.
A modification of this idea allows to change with time, so that inflation
In economics, inflation is an increase in the average price of goods and services in terms of money. This increase is measured using a price index, typically a consumer price index (CPI). When the general price level rises, each unit of curre ...
may come from the cosmological constant being larger near the Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
than nowadays. It can also be viewed as a different approach to the problem of quantum gravity
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
.[
]
High energy
The Poincaré group
The Poincaré group, named after Henri Poincaré (1905), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our unde ...
contracts
A contract is an agreement that specifies certain legally enforceable rights and obligations pertaining to two or more parties. A contract typically involves consent to transfer of goods, services, money, or promise to transfer any of thos ...
to the Galilean group for low-velocity kinematics
In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics.
Kinematics is concerned with s ...
, meaning that when all velocities are small the Poincaré group "morphs" into the Galilean group. (This can be made precise with İnönü and Wigner's concept of group contraction.)
Similarly, the de Sitter group contracts
A contract is an agreement that specifies certain legally enforceable rights and obligations pertaining to two or more parties. A contract typically involves consent to transfer of goods, services, money, or promise to transfer any of thos ...
to the Poincaré group for short-distance kinematics, when the magnitudes of all translations considered are very small compared to the de Sitter radius. In quantum mechanics, short distances are probed by high energies, so that for energies above a very small value related to the cosmological constant, the Poincaré group is a good approximation to the de Sitter group.
In de Sitter relativity, the cosmological constant is no longer a free parameter of the same type; it is determined by the de Sitter radius, a fundamental quantity that determines the commutation relation of translation with rotations/boosts. This means that the theory of de Sitter relativity might be able to provide insight on the value of the cosmological constant, perhaps explaining the cosmic coincidence. Unfortunately, the de Sitter radius, which determines the cosmological constant, is an adjustable parameter in de Sitter relativity, so the theory requires a separate condition to determine its value in relation to the measurement scale.
When a cosmological constant is viewed as a kinematic parameter, the definitions of energy and momentum must be changed from those of special relativity. These changes could significantly modify the physics of the early universe if the cosmological constant was greater back then. Some speculate that a high energy experiment could modify the local structure of spacetime from Minkowski space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model helps show how a ...
to de Sitter space with a large cosmological constant for a short period of time, and this might eventually be tested in the existing or planned particle collider
In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass.
They vary greatly in size or quantity, fro ...
.
Doubly special relativity
Since the de Sitter group naturally incorporates an invariant length parameter, de Sitter relativity can be interpreted as an example of the so-called doubly special relativity. There is a fundamental difference, though: whereas in all doubly special relativity models the Lorentz symmetry is violated, in de Sitter relativity it remains as a physical symmetry. A drawback of the usual doubly special relativity models is that they are valid only at the energy scales where ordinary special relativity is supposed to break down, giving rise to a patchwork relativity. On the other hand, de Sitter relativity is found to be invariant under a simultaneous re-scaling of mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
,[
] and is consequently valid at all energy scales. A relationship between doubly special relativity, de Sitter space and general relativity is described by Derek Wise. See also MacDowell–Mansouri action.
Newton–Hooke: de Sitter special relativity in the limit ''v'' ≪ ''c''
In the limit as , the de Sitter group contracts to the Newton–Hooke group. This has the effect that in the nonrelativistic limit, objects in de Sitter space have an extra "repulsion" from the origin: objects have a tendency to move away from the center with an outward pointing fictitious force
A fictitious force, also known as an inertial force or pseudo-force, is a force that appears to act on an object when its motion is described or experienced from a non-inertial reference frame, non-inertial frame of reference. Unlike real forc ...
proportional to their distance from the origin.
While it looks as though this might pick out a preferred point in space—the center of repulsion, it is more subtly isotropic. Moving to the uniformly accelerated frame of reference of an observer at another point, all accelerations appear to have a repulsion center at the new point.
What this means is that in a spacetime with non-vanishing curvature, gravity is modified from Newtonian gravity. At distances comparable to the radius of the space, objects feel an additional linear repulsion from the center of coordinates.
History of de Sitter invariant special relativity
* "de Sitter relativity" is the same as the theory of "projective relativity" of Luigi Fantappiè
Luigi Fantappiè (15 September 1901 – 28 July 1956) was an Italian mathematician, known for work in mathematical analysis and for creating the theory of analytic functionals: he was a student and follower of Vito Volterra. Later in life, he p ...
and Giuseppe Arcidiacono first published in 1954 by Fantappiè[
] and the same as another independent discovery in 1976.
* In 1968 Henri Bacry and Jean-Marc Lévy-Leblond published a paper on possible kinematics[
]
* In 1972 Freeman Dyson[ further explored this.
* In 1973 Eliano Pessa described how Fantappié–Arcidiacono projective relativity relates to earlier conceptions of projective relativity and to Kaluza Klein theory.
* R. Aldrovandi, J.P. Beltrán Almeida and J.G. Pereira have used the terms "de Sitter special relativity" and "de Sitter relativity" starting from their 2007 paper "de Sitter special relativity".][ This paper was based on previous work on amongst other things: the consequences of a non-vanishing cosmological constant, on doubly special relativity and on the Newton–Hooke group][ and early work formulating special relativity with a de Sitter space
* In 2008 S. Cacciatori, V. Gorini and A. Kamenshchik][ published a paper about the kinematics of de Sitter relativity.
* Papers by other authors include: dSR and the fine structure constant; dSR and dark energy; dSR Hamiltonian Formalism; and De Sitter Thermodynamics from Diamonds's Temperature, Triply special relativity from six dimensions, Deformed General Relativity and Torsion.
]
Quantum de Sitter special relativity
There are quantized or quantum versions of de Sitter special relativity.
Early work on formulating a quantum theory in a de Sitter space includes:[
]
See also
* Noncommutative geometry
Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions, possibly in some g ...
* Quantum field theory in curved spacetime
In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed ...
References
Further reading
*
*
*
*
*
* {{cite book
, author=Giuseppe Arcidiacono
, year=1986
, title=Projective Relativity, Cosmology, and Gravitation
, publisher=Hadronic Press
, isbn=978-0911767391
Special relativity
General relativity
Physical cosmology
Quantum gravity
Kinematics
Riemannian geometry
Group theory