HOME

TheInfoList



OR:

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, a branch of mathematics, the (binary) cycle space of an
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' v ...
is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but ca ...
over the two-element
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolo ...
of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film an ...
.


Definitions


Graph theory

A spanning subgraph of a given graph ''G'' may be defined from any subset ''S'' of the edges of ''G''. The subgraph has the same set of vertices as ''G'' itself (this is the meaning of the word "spanning") but has the elements of ''S'' as its edges. Thus, a graph ''G'' with ''m'' edges has 2''m'' spanning subgraphs, including ''G'' itself as well as the
empty graph In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph"). Order-zero graph The order-zero graph, , is th ...
on the same set of vertices as ''G''. The collection of all spanning subgraphs of a graph ''G'' forms the edge space of ''G''... A graph ''G'', or one of its subgraphs, is said to be Eulerian if each of its vertices has an
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 4 ...
of incident edges (this number is called the degree of the vertex). This property is named after
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ...
who proved in 1736, in his work on the
Seven Bridges of Königsberg The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in Prussia (n ...
, that a connected graph has a tour that visits each edge exactly once if and only if it is Eulerian. However, an Eulerian subgraph does not need to be connected; for instance, the empty graph, in which all vertices are disconnected from each other, is Eulerian. The cycle space of a graph is the collection of its Eulerian spanning subgraphs.


Algebra

If one applies any set operation such as union or intersection of sets to two spanning subgraphs of a given graph, the result will again be a subgraph. In this way, the edge space of an arbitrary graph can be interpreted as a
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...
. The cycle space, also, has an algebraic structure, but a more restrictive one. The union or intersection of two Eulerian subgraphs may fail to be Eulerian. However, the
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. T ...
of two Eulerian subgraphs (the graph consisting of the edges that belong to exactly one of the two given graphs) is again Eulerian. This follows from the fact that the symmetric difference of two sets with an even number of elements is also even. Applying this fact separately to the
neighborhoods A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
of each vertex shows that the symmetric difference operator preserves the property of being Eulerian. A family of sets closed under the symmetric difference operation can be described algebraically as a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but ca ...
over the two-element
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
\Z_2. This field has two elements, 0 and 1, and its addition and multiplication operations can be described as the familiar addition and multiplication of
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
, taken modulo 2. A vector space consists of a set of elements together with an addition and scalar multiplication operation satisfying certain properties generalizing the properties of the familiar
real vector space Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
s; for the cycle space, the elements of the vector space are the Eulerian subgraphs, the addition operation is symmetric differencing, multiplication by the scalar 1 is the
identity operation Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unch ...
, and multiplication by the scalar 0 takes every element to the empty graph, which forms the additive identity element for the cycle space. The edge space is also a vector space over \Z_2 if we use the symmetric difference as addition. As vector spaces, the cycle space and the
cut space In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connect ...
of the graph (the family of edge sets that span the cuts of the graph) are the
orthogonal complement In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace ''W'' of a vector space ''V'' equipped with a bilinear form ''B'' is the set ''W''⊥ of all vectors in ''V'' that are orthogonal to ev ...
s of each other within the edge space. This means that a set S of edges in a graph forms a cut if and only if every Eulerian subgraph has an even number of edges in common with S, and S forms an Eulerian subgraph if and only if every cut has an even number of edges in common with S. Although these two spaces are orthogonal complements, some graphs have nonempty subgraphs that belong to both of them. Such a subgraph (an Eulerian cut) exists as part of a graph G if and only if G has an even number of
spanning forest In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is no ...
s.


Topology

An undirected graph may be viewed as a
simplicial complex In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial s ...
with its vertices as zero-dimensional simplices and the edges as one-dimensional simplices.. The chain complex of this topological space consists of its edge space and vertex space (the Boolean algebra of sets of vertices), connected by a boundary operator that maps any spanning subgraph (an element of the edge space) to its set of odd-degree vertices (an element of the vertex space). The
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolo ...
:H_1(G,\Z_2) consists of the elements of the edge space that map to the zero element of the vertex space; these are exactly the Eulerian subgraphs. Its group operation is the symmetric difference operation on Eulerian subgraphs. Replacing \Z_2 in this construction by an arbitrary ring allows the definition of cycle spaces to be extended to cycle spaces with coefficients in the given ring, that form
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a sy ...
over the ring. In particular, the integral cycle space is the space :H_1(G,\Z). It can be defined in graph theoretic terms by choosing an arbitrary
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
of the graph, and defining an integral cycle of a graph G to be an assignment of integers to the edges of G (an element of the
free abelian group In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subse ...
over the edges) with the property that, at each vertex, the sum of the numbers assigned to incoming edges equals the sum of the numbers assigned to outgoing edges.. A member of H_1(G,\Z) or of H_1(G,\Z_k) (the cycle space modulo k) with the additional property that all of the numbers assigned to the edges are nonzero is called a nowhere-zero flow or a nowhere-zero k-flow.


Circuit rank

As a vector space, the dimension of the cycle space of a graph with n vertices, m edges, and c connected components is m-n+c.. This number can be interpreted topologically as the first Betti number of the graph. In graph theory, it is known as the circuit rank, cyclomatic number, or nullity of the graph. Combining this formula for the rank with the fact that the cycle space is a vector space over the two-element field shows that the total number of elements in the cycle space is exactly 2^.


Cycle bases

A
basis Basis may refer to: Finance and accounting *Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates *Basis trading, a trading strategy consisting of ...
of a vector space is a minimal subset of the elements with the property that all other elements can be written as a linear combination of basis elements. Every basis of a finite-dimensional space has the same number of elements, which equals the dimension of the space. In the case of the cycle space, a basis is a family of exactly m-n+c Eulerian subgraphs, with the property that every Eulerian subgraph can be written as the symmetric difference of a family of basis elements.


Existence

By
Veblen's theorem In mathematics, Veblen's theorem, introduced by , states that the set of edges of a finite graph can be written as a union of disjoint simple cycles if and only if every vertex has even degree. Thus, it is closely related to the theorem of that ...
, every Eulerian subgraph of a given graph can be decomposed into simple cycles, subgraphs in which all vertices have degree zero or two and in which the degree-two vertices form a connected set. Therefore, it is always possible to find a basis in which the basis elements are themselves all simple cycles. Such a basis is called a cycle basis of the given graph. More strongly, it is always possible to find a basis in which the basis elements are induced cycles or even (in a 3-vertex-connected graph) induced cycles whose removal does not separate the remaining graph.


Fundamental and weakly fundamental bases

One way of constructing a cycle basis is to form a maximal forest of the graph, and then for each edge e that does not belong to the forest, form a cycle C_e consisting of e together with the path in the forest connecting the endpoints of e. The cycles C_e formed in this way are linearly independent (each one contains an edge e that does not belong to any of the other cycles) and has the correct size m-n+c to be a basis, so it necessarily is a basis. A basis formed in this way is called a fundamental cycle basis (with respect to the chosen forest). If there exists a linear ordering of the cycles in a cycle basis such that each cycle includes at least one edge that is not part of any previous cycle, then the cycle basis is called weakly fundamental. Every fundamental cycle basis is weakly fundamental (for all linear orderings) but not necessarily vice versa. There exist graphs, and cycle bases for those graphs, that are not weakly fundamental..


Minimum weight bases

If the edges of a graph are given real number weights, the weight of a subgraph may be computed as the sum of the weights of its edges. The minimum weight basis of the cycle space is necessarily a cycle basis, and can be constructed in polynomial time. The minimum weight basis is not always weakly fundamental, and when it is not it is
NP-hard In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard p ...
to find the weakly fundamental basis with the minimum possible weight.


Planar graphs


Homology

If a
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cro ...
is embedded into the plane, its chain complex of edges and vertices may be embedded into a higher dimensional chain complex that also includes the sets of faces of the graph. The boundary map of this chain complex takes any 2-chain (a set of faces) to the set of edges that belong to an odd number of faces in the 2-chain. The boundary of a 2-chain is necessarily an Eulerian subgraph, and every Eulerian subgraph can be generated in this way from exactly two different 2-chains (each of which is the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
of the other)., pp. 105–106. It follows from this that the set of bounded faces of the embedding forms a cycle basis for the planar graph: removing the unbounded face from this set of cycles reduces the number of ways each Eulerian subgraph can be generated from two to exactly one.


Mac Lane's planarity criterion

Mac Lane's planarity criterion In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane, who published it in 1937. It states that a finite undirected graph is planar if and only if the ...
, named after
Saunders Mac Lane Saunders Mac Lane (4 August 1909 – 14 April 2005) was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftvill ...
, characterizes planar graphs in terms of their cycle spaces and cycle bases. It states that a finite undirected graph is planar if and only if the graph has a cycle basis in which each edge of the graph participates in at most two basis cycles. In a planar graph, a cycle basis formed by the set of bounded faces of an embedding necessarily has this property: each edge participates only in the basis cycles for the two faces it separates. Conversely, if a cycle basis has at most two cycles per edge, then its cycles can be used as the set of bounded faces of a planar embedding of its graph.


Duality

The cycle space of a planar graph is the
cut space In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connect ...
of its
dual graph In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-loo ...
, and vice versa. The minimum weight cycle basis for a planar graph is not necessarily the same as the basis formed by its bounded faces: it can include cycles that are not faces, and some faces may not be included as cycles in the minimum weight cycle basis. There exists a minimum weight cycle basis in which no two cycles cross each other: for every two cycles in the basis, either the cycles enclose disjoint subsets of the bounded faces, or one of the two cycles encloses the other one. Following the duality between cycle spaces and cut spaces, this basis for a planar graph corresponds to a
Gomory–Hu tree In combinatorial optimization, the Gomory–Hu tree of an undirected graph with capacities is a weighted tree that represents the minimum ''s''-''t'' cuts for all ''s''-''t'' pairs in the graph. The Gomory–Hu tree can be constructed in maximum ...
of the dual graph, a minimum weight basis for its cut space.


Nowhere zero flows

In planar graphs,
colorings Food coloring, or color additive, is any dye, pigment, or substance that imparts color when it is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used in both commercial food ...
with k distinct colors are dual to nowhere zero flows over the ring \Z_k of integers modulo k. In this duality, the difference between the colors of two adjacent regions is represented by a flow value across the edge separating the regions. In particular, the existence of nowhere zero 4-flows is equivalent to the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sha ...
. The snark theorem generalizes this result to nonplanar graphs.


References

{{reflist, 30em Algebraic graph theory