HOME

TheInfoList



OR:

A current transformer (CT) is a type of
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
that is used to reduce or multiply an
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
(AC). It produces a current in its secondary which is proportional to the current in its primary. Current transformers, along with voltage or potential transformers, are
instrument transformer Instrument transformers are high accuracy class electrical devices used to isolate or transform voltage or current levels. The most common usage of instrument transformers is to operate instruments or metering from high voltage or high current circu ...
s. Instrument transformers scale the large values of voltage or current to small, standardized values that are easy to handle for measuring instruments and
protective relay In electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detecti ...
s. The instrument transformers isolate measurement or protection circuits from the high voltage of the primary system. A current transformer provides a secondary current that is accurately proportional to the current flowing in its primary. The current transformer presents a negligible load to the primary circuit.Donald G. Fink, H. Wayne Beatty (ed), ''Standard Handbook for Electrical Engineers, Eleventh Edition'', Mc-Graw Hill,1978, 0-07-020974-X, pp. 10-51 - 10-57 Current transformers are the current-sensing units of the power system and are used at generating stations, electrical substations, and in industrial and commercial electric power distribution.


Function

A current transformer has a primary winding, a core, and a secondary winding, although some transformers, including current transformers, use an air core. While the physical principles are the same, the details of a "current" transformer compared with a "voltage" transformer will differ owing to different requirements of the application. A current transformer is designed to maintain an accurate ratio between the currents in its primary and secondary circuits over a defined range. The
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
in the primary produces an alternating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
in the core, which then induces an alternating current in the secondary. The primary circuit is largely unaffected by the insertion of the CT. Accurate current transformers need close coupling between the primary and secondary to ensure that the secondary current is proportional to the primary current over a wide current range. The current in the secondary is the current in the primary (assuming a single turn primary) divided by the number of turns of the secondary. In the illustration on the right, 'I' is the current in the primary, 'B' is the magnetic field, 'N' is the number of turns on the secondary, and 'A' is an AC ammeter. Current transformers typically consist of a silicon steel ring core wound with many turns of copper wire, as shown in the illustration to the right. The conductor carrying the primary current is passed through the ring. The CT's primary, therefore, consists of a single 'turn'. The primary 'winding' may be a permanent part of the current transformer, i.e., a heavy copper bar to carry current through the core. Window-type current transformers are also common, which can have circuit cables run through the middle of an opening in the core to provide a single-turn primary winding. To assist accuracy, the primary conductor should be centered in the aperture. CTs are specified by their current ratio from primary to secondary. The rated secondary current is normally standardized at 1 or 5 amperes. For example, a 4000:5 CT secondary winding will supply an output current of 5 amperes when the primary winding current is 4000 amperes. This ratio can also be used to find the impedance or voltage on one side of the transformer, given the appropriate value at the other side. For the 4000:5 CT, the secondary impedance can be found as , and the secondary voltage can be found as . In some cases, the secondary impedance is ''referred'' to the primary side, and is found as . Referring the impedance is done simply by multiplying initial secondary impedance value by the current ratio. The secondary winding of a CT can have taps to provide a range of ratios, five taps being common. Current transformer shapes and sizes vary depending on the end-user or switch gear manufacturer. Low-voltage single ratio metering current transformers are either a ring type or plastic molded case. Split-core current transformers either have a two-part core or a core with a removable section. This allows the transformer to be placed around a conductor without disconnecting it first. Split-core current transformers are typically used in low current measuring instruments, often portable, battery-operated, and hand-held (see illustration lower right).


Use

Current transformers are used extensively for measuring current and monitoring the operation of the
power grid An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:Kaplan, S. M. (2009). Smart Grid. Electrical Power ...
. Along with voltage leads, revenue-grade CTs drive the electrical utility's
watt-hour meter North American domestic analog electricity meter. Electricity meter with transparent plastic case (Israel) North American domestic electronic electricity meter An electricity meter, electric meter, electrical meter, energy meter, or kilowa ...
on many larger commercial and industrial supplies. High-voltage current transformers are mounted on porcelain or polymer insulators to isolate them from ground. Some CT configurations slip around the bushing of a high-voltage transformer or
circuit breaker A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by an overcurrent or short circuit. Its basic function is to interrupt current flow to protect equipment and to prevent the ris ...
, which automatically centers the conductor inside the CT window. Current transformers can be mounted on the low voltage or high voltage leads of a power transformer. Sometimes a section of a bus bar can be removed to replace a current transformer. Often, multiple CTs are installed as a "stack" for various uses. For example, protection devices and revenue metering may use separate CTs to provide isolation between metering and protection circuits and allows current transformers with different characteristics (accuracy, overload performance) to be used for the devices. In the United States, the
National Electrical Code The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Prote ...
(NEC) requires residual current devices in commercial and residential electrical systems to protect outlets installed in "wet" locations such as kitchens and bathrooms, as well as weatherproof outlets installed outdoors. Such devices, most commonly ground fault circuit interrupters (GFCIs), typically run both the 120-volt energized conductor and the neutral return conductor through a current transformer, with the secondary coil connected to a trip device. Under normal conditions, the current in the two circuit wires will be equal and flow in opposite directions, resulting in zero net current through the CT and no current in the secondary coil. If the supply current is redirected downstream into the third (ground) circuit conductor (e.g., if the grounded metallic case of a power tool contacts a 120-volt conductor), or into earth ground (e.g., if a person contacts a 120-volt conductor), the neutral return current will be less than the supply current, resulting in a positive net current flow through the CT. This net current flow will induce current in the secondary coil, which will cause the trip device to operate and de-energize the circuit - typically within 0.2 seconds. The burden (load) impedance should not exceed the specified maximum value to avoid the secondary voltage exceeding the limits for the current transformer. The primary current rating of a current transformer should not be exceeded, or the core may enter its non-linear region and ultimately saturate. This would occur near the end of the first half of each half (positive and negative) of the AC sine wave in the primary and compromise accuracy.


Safety

Current transformers are often used to monitor high currents or currents at high voltages. Technical standards and design practices are used to ensure the safety of installations using current transformers. The secondary of a current transformer should not be disconnected from its burden while current is in the primary, as the secondary will attempt to continue driving current into an effective infinite impedance potentially generating high voltages and thus compromising operator safety. For certain current transformers, this voltage may reach several kilovolts and may cause
arcing An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An ...
. Exceeding the secondary voltage may also degrade the accuracy of the transformer or destroy it. Output voltage in open operation is limited by core saturation since the primary flux is no longer canceled by secondary flux, smaller current transformers may not actually incur dangerous voltages when operating nominally. Faster current transients from loads being switched on etc. can however still induce dangerous voltage levels due to high current slope.


Accuracy

The accuracy of a CT is affected by a number of factors including: * Burden * Burden class/saturation class * Rating factor * Load * External
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical ...
s *
Temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
* Physical configuration * The selected tap, for multi-ratio CTs * Phase change * Capacitive coupling between primary and secondary * Resistance of primary and secondary * Core magnetizing current Accuracy classes for various types of measurement and at standard loads in the secondary circuit (burdens) are defined in IEC 61869-1 as classes 0.1, 0.2s, 0.2, 0.5, 0.5s, 1 and 3. The class designation is an approximate measure of the CT's accuracy. The ratio (primary to secondary current) error of a Class 1 CT is 1% at rated current; the ratio error of a Class 0.5 CT is 0.5% or less. Errors in phase are also important, especially in power measuring circuits. Each class has an allowable maximum phase error for a specified load impedance. Current transformers used for protective relaying also have accuracy requirements at overload currents in excess of the normal rating to ensure accurate performance of relays during system faults. A CT with a rating of 2.5L400 specifies with an output from its secondary winding of twenty times its rated secondary current (usually ) and 400 V (IZ drop) its output accuracy will be within 2.5 percent.


Burden

The secondary load of a current transformer is termed the "burden" to distinguish it from the primary load. The burden in a CT metering
electrical network An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources ...
is largely resistive impedance presented to its secondary winding. Typical burden ratings for IEC CTs are 1.5  VA, 3 VA, 5 VA, 10 VA, 15 VA, 20 VA, 30 VA, 45 VA and 60 VA. ANSI/IEEE burden ratings are B-0.1, B-0.2, B-0.5, B-1.0, B-2.0 and B-4.0. This means a CT with a burden rating of B-0.2 will maintain its stated accuracy with up to 0.2  Ω on the secondary circuit. These specification diagrams show accuracy parallelograms on a grid incorporating magnitude and phase angle error scales at the CT's rated burden. Items that contribute to the burden of a current measurement circuit are switch-blocks, meters and intermediate conductors. The most common cause of excess burden impedance is the conductor between the
meter The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
and the CT. When substation meters are located far from the meter cabinets, the excessive length of cable creates a large resistance. This problem can be reduced by using thicker cables and CTs with lower secondary currents (1 A), both of which will produce less voltage drop between the CT and its metering devices.


Knee-point core-saturation voltage

The knee-point voltage of a current transformer is the magnitude of the secondary voltage above which the output current ceases to linearly follow the input current within declared accuracy. In testing, if a voltage is applied across the secondary terminals the magnetizing current will increase in proportion to the applied voltage, until the knee point is reached. The knee point is defined as the voltage at which a 10% increase in applied voltage increases the magnetizing current by 50%. For voltages greater than the knee point, the magnetizing current increases considerably even for small increments in voltage across the secondary terminals. The knee-point voltage is less applicable for metering current transformers as their accuracy is generally much higher but constrained within a very small range of the current transformer rating, typically 1.2 to 1.5 times rated current. However, the concept of knee point voltage is very pertinent to protection current transformers, since they are necessarily exposed to fault currents of 20 to 30 times rated current.Anon, ''Protective Relays Application Guide Second Edition''The General Electric Company Limited of England, 1975 Section 5.3


Phase shift

Ideally, the primary and secondary currents of a current transformer should be in phase. In practice, this is impossible, but, at normal power frequencies,
phase shift In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it ...
s of a few tenths of a degree are achievable, while simpler CTs may have phase shifts up to six degrees. For current measurement, phase shift is immaterial as
ammeter An ammeter (abbreviation of ''Ampere meter'') is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit ...
s only display the magnitude of the current. However, in
wattmeter The wattmeter is an instrument for measuring the electric active power (or the average of the rate of flow of electrical energy) in watts of any given circuit. Electromagnetic wattmeters are used for measurement of utility frequency and audio ...
s,
energy meter North American domestic analog electricity meter. Electricity meter with transparent plastic case (Israel) North American domestic electronic electricity meter An electricity meter, electric meter, electrical meter, energy meter, or kilowa ...
s, and
power factor In electrical engineering, the power factor of an AC power system is defined as the ratio of the ''real power'' absorbed by the load to the '' apparent power'' flowing in the circuit. Real power is the average of the instantaneous product of v ...
meters, phase shift produces errors. For power and energy measurement, the errors are considered to be negligible at unity power factor but become more significant as the power factor approaches zero. At zero power-factor, any indicated power is entirely due to the current transformer's phase error. The introduction of electronic power and energy meters has allowed current phase error to be calibrated out.


Construction

Bar-type current transformers have terminals for source and load connections of the primary circuit, and the body of the current transformer provides insulation between the primary circuit and ground. By use of oil insulation and porcelain bushings, such transformers can be applied at the highest transmission voltages. Ring-type current transformers are installed over a bus bar or an insulated cable and have only a low level of insulation on the secondary coil. To obtain non-standard ratios or for other special purposes, more than one turn of the primary cable may be passed through the ring. Where a metal shield is present in the cable jacket, it must be terminated so no net sheath current passes through the ring, to ensure accuracy. Current transformers used to sense ground fault (zero sequence) currents, such as in a three-phase installation, may have three primary conductors passed through the ring. Only the net unbalanced current produces a secondary current - this can be used to detect a fault from an energized conductor to ground. Ring-type transformers usually use dry insulation systems, with a hard rubber or plastic case over the secondary windings. For temporary connections, a split ring-type current transformer can be slipped over a cable without disconnecting it. This type has a laminated iron core, with a hinged section that allows it to be installed over the cable; the core links the magnetic flux produced by the single turn primary winding to a wound secondary with many turns. Because the gaps in the hinged segment introduce inaccuracy, such devices are not normally used for revenue metering. Current transformers, especially those intended for high voltage substation service, may have multiple taps on their secondary windings, providing several ratios in the same device. This can be done to allow for reduced inventory of spare units, or to allow for load growth in an installation. A high-voltage current transformer may have several secondary windings with the same primary, to allow for separate metering and protection circuits, or for connection to different types of protective devices. For example, one secondary may be used for branch overcurrent protection, while a second winding may be used in a bus differential protective scheme, and a third winding used for power and current measurement.


Special types

Specially constructed ''
wideband In communications, a system is wideband when the message bandwidth significantly exceeds the coherence bandwidth of the channel. Some communication links have such a high data rate that they are forced to use a wide bandwidth; other links ma ...
current transformers'' are also used (usually with an
oscilloscope An oscilloscope (informally a scope) is a type of electronic test instrument that graphically displays varying electrical voltages as a two-dimensional plot of one or more signals as a function of time. The main purposes are to display repetiti ...
) to measure
waveform In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.David Crecraft, David Gorham, ''Electro ...
s of
high frequency High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten ...
or pulsed currents within
pulsed power Pulsed power is the science and technology of accumulating energy over a relatively long period of time and releasing it instantly, thus increasing the instantaneous power. They can be used in some applications such as food processing, water treatme ...
systems. Unlike CTs used for power circuitry, wideband CTs are rated in output volts per ampere of primary current. If the burden resistance is much less than inductive impedance of the secondary winding at the measurement frequency then the current in the secondary tracks the primary current and the transformer provides a current output that is proportional to the measured current. On the other hand, if that condition is not true, then the transformer is inductive and gives a differential output. The Rogowski coil uses this effect and requires an external
integrator An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output. Integration is an importan ...
in order to provide a voltage output that is proportional to the measured current.


Standards

Ultimately, depending on client requirements, there are two main standards to which current transformers are designed. IEC 61869-1 (in the past IEC 60044-1) & IEEE C57.13 (ANSI), although the Canadian and Australian standards are also recognised.


High voltage types

Current transformers are used for protection, measurement and control in high-voltage electrical substations and the
electrical grid An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:Kaplan, S. M. (2009). Smart Grid. Electrical Power ...
. Current transformers may be installed inside switchgear or in apparatus bushings, but very often free-standing outdoor current transformers are used. In a switchyard, ''live tank'' current transformers have a substantial part of their enclosure energized at the line voltage and must be mounted on insulators. ''Dead tank'' current transformers isolate the measured circuit from the enclosure. Live tank CTs are useful because the primary conductor is short, which gives better stability and a higher short-circuit current rating. The primary of the winding can be evenly distributed around the magnetic core, which gives better performance for overloads and transients. Since the major insulation of a live-tank current transformer is not exposed to the heat of the primary conductors, insulation life and thermal stability is improved. A high-voltage current transformer may contain several cores, each with a secondary winding, for different purposes (such as metering circuits, control, or protection).''Protective Relays Application Guide'', (The General Electric Company Limited of England, 1975) pages 78-87 A neutral current transformer is used as earth fault protection to measure any fault current flowing through the neutral line from the wye neutral point of a transformer.


See also

*
Instrumentation Instrumentation a collective term for measuring instruments that are used for indicating, measuring and recording physical quantities. The term has its origins in the art and science of scientific instrument-making. Instrumentation can refer to ...
*
Transformer types A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional part ...
*
Current sensing techniques In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on r ...


References

*


External links


Introduction to Current Transformers

Testing Current Transformers
{{Authority control Electric transformers Electronic test equipment