HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a subset of a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, or more generally an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a
crescent A crescent shape (, ) is a symbol or emblem used to represent the lunar phase in the first quarter (the "sickle moon"), or by extension a symbol representing the Moon itself. In Hinduism, Lord Shiva is often shown wearing a crescent moon on his ...
shape, is not convex. The
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film *Boundary (cricket), the edge of the pla ...
of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a
real-valued function In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real f ...
defined on an interval with the property that its epigraph (the set of points on or above the
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
of the function) is a convex set. Convex minimization is a subfield of
optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex functions is called
convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory. Convex sets A subset C \subseteq X of som ...
. The notion of a convex set can be generalized as described below.


Definitions

Let be a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
or an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
over the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, or, more generally, over some
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered fiel ...
. This includes Euclidean spaces, which are affine spaces. A subset of is convex if, for all and in , the line segment connecting and is included in . This means that the
affine combination In mathematics, an affine combination of is a linear combination : \sum_^ = \alpha_ x_ + \alpha_ x_ + \cdots +\alpha_ x_, such that :\sum_^ =1. Here, can be elements ( vectors) of a vector space over a field , and the coefficients \alpha_ ...
belongs to , for all and in , and in the interval . This implies that convexity (the property of being convex) is invariant under affine transformations. This implies also that a convex set in a
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
is path-connected, thus
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
. A set is ' if every point on the line segment connecting and other than the endpoints is inside the topological interior of . A closed convex subset is strictly convex if and only if every one of its boundary points is an extreme point. A set is ''
absolutely convex In mathematics, a subset ''C'' of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull ...
'' if it is convex and
balanced In telecommunications and professional audio, a balanced line or balanced signal pair is a circuit consisting of two conductors of the same type, both of which have equal impedances along their lengths and equal impedances to ground and to other ci ...
. The convex subsets of (the set of real numbers) are the intervals and the points of . Some examples of convex subsets of the Euclidean plane are solid
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s, solid triangles, and intersections of solid triangles. Some examples of convex subsets of a Euclidean 3-dimensional space are the Archimedean solids and the Platonic solids. The Kepler-Poinsot polyhedra are examples of non-convex sets.


Non-convex set

A set that is not convex is called a ''non-convex set''. A polygon that is not a
convex polygon In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a ...
is sometimes called a concave polygon, and some sources more generally use the term ''concave set'' to mean a non-convex set, but most authorities prohibit this usage. The
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
of a convex set, such as the epigraph of a concave function, is sometimes called a ''reverse convex set'', especially in the context of mathematical optimization.


Properties

Given points in a convex set , and nonnegative numbers such that , the
affine combination In mathematics, an affine combination of is a linear combination : \sum_^ = \alpha_ x_ + \alpha_ x_ + \cdots +\alpha_ x_, such that :\sum_^ =1. Here, can be elements ( vectors) of a vector space over a field , and the coefficients \alpha_ ...
\sum_^r\lambda_k u_k belongs to . As the definition of a convex set is the case , this property characterizes convex sets. Such an affine combination is called a
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other w ...
of .


Intersections and unions

The collection of convex subsets of a vector space, an affine space, or a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
has the following properties:Soltan, Valeriu, ''Introduction to the Axiomatic Theory of Convexity'', Ştiinţa, Chişinău, 1984 (in Russian). #The empty set and the whole space are convex. #The intersection of any collection of convex sets is convex. #The ''
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
'' of a sequence of convex sets is convex, if they form a non-decreasing chain for inclusion. For this property, the restriction to chains is important, as the union of two convex sets ''need not'' be convex.


Closed convex sets

Closed convex sets are convex sets that contain all their limit points. They can be characterised as the intersections of ''closed half-spaces'' (sets of point in space that lie on and to one side of a hyperplane). From what has just been said, it is clear that such intersections are convex, and they will also be closed sets. To prove the converse, i.e., every closed convex set may be represented as such intersection, one needs the supporting hyperplane theorem in the form that for a given closed convex set and point outside it, there is a closed half-space that contains and not . The supporting hyperplane theorem is a special case of the
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
of functional analysis.


Convex sets and rectangles

Let be a
convex body In mathematics, a convex body in n-dimensional Euclidean space \R^n is a compact convex set with non-empty interior. A convex body K is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x lies in ...
in the plane (a convex set whose interior is non-empty). We can inscribe a rectangle ''r'' in such that a homothetic copy ''R'' of ''r'' is circumscribed about . The positive homothety ratio is at most 2 and: \tfrac \cdot\operatorname(R) \leq \operatorname(C) \leq 2\cdot \operatorname(r)


Blaschke-Santaló diagrams

The set \mathcal^2 of all planar convex bodies can be parameterized in terms of the convex body
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
''D'', its inradius ''r'' (the biggest circle contained in the convex body) and its circumradius ''R'' (the smallest circle containing the convex body). In fact, this set can be described by the set of inequalities given by 2r \le D \le 2R R \le \frac D r + R \le D D^2 \sqrt \le 2R (2R + \sqrt) and can be visualized as the image of the function ''g'' that maps a convex body to the point given by (''r''/''R'', ''D''/2''R''). The image of this function is known a (''r'', ''D'', ''R'') Blachke-Santaló diagram. Alternatively, the set \mathcal^2 can also be parametrized by its width (the smallest distance between any two different parallel support hyperplanes), perimeter and area.


Other properties

Let ''X'' be a topological vector space and C \subseteq X be convex. * \operatorname C and \operatorname C are both convex (i.e. the closure and interior of convex sets are convex). * If a \in \operatorname C and b \in \operatorname C then [a, b[ \, \subseteq \operatorname C (where [a, b[ \, := \left\). * If \operatorname C \neq \emptyset then: ** \operatorname \left( \operatorname C \right) = \operatorname C, and ** \operatorname C = \operatorname \left( \operatorname C \right) = C^i, where C^ is the algebraic interior of ''C''.


Convex hulls and Minkowski sums


Convex hulls

Every subset of the vector space is contained within a smallest convex set (called the convex hull of ), namely the intersection of all convex sets containing . The convex-hull operator Conv() has the characteristic properties of a hull operator: * ''extensive'': , * '' non-decreasing'': implies that , and * ''
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
'': . The convex-hull operation is needed for the set of convex sets to form a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
, in which the "''join''" operation is the convex hull of the union of two convex sets \operatorname(S)\vee\operatorname(T) = \operatorname(S\cup T) = \operatorname\bigl(\operatorname(S)\cup\operatorname(T)\bigr). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
.


Minkowski addition

In a real vector-space, the ''
Minkowski sum In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski ...
'' of two (non-empty) sets, and , is defined to be the set formed by the addition of vectors element-wise from the summand-sets S_1+S_2=\. More generally, the ''Minkowski sum'' of a finite family of (non-empty) sets is the set formed by element-wise addition of vectors \sum_n S_n = \left \. For Minkowski addition, the ''zero set''  containing only the zero vector  has special importance: For every non-empty subset S of a vector space S+\=S; in algebraic terminology, is the
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
of Minkowski addition (on the collection of non-empty sets).


Convex hulls of Minkowski sums

Minkowski addition behaves well with respect to the operation of taking convex hulls, as shown by the following proposition: Let be subsets of a real vector-space, the convex hull of their Minkowski sum is the Minkowski sum of their convex hulls \operatorname(S_1+S_2)=\operatorname(S_1)+\operatorname(S_2). This result holds more generally for each finite collection of non-empty sets: \text\left ( \sum_n S_n \right ) = \sum_n \text \left (S_n \right). In mathematical terminology, the operations of Minkowski summation and of forming convex hulls are commuting operations.For the commutativity of Minkowski addition and convexification, see Theorem 1.1.2 (pages 2–3) in Schneider; this reference discusses much of the literature on the convex hulls of Minkowski
sumset In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets A and B of an abelian group G (written additively) is defined to be the set of all sums of an element from A with an element from B. That is, :A + B = \. The n-f ...
s in its "Chapter 3 Minkowski addition" (pages 126–196):


Minkowski sums of convex sets

The Minkowski sum of two compact convex sets is compact. The sum of a compact convex set and a closed convex set is closed. The following famous theorem, proved by Dieudonné in 1966, gives a sufficient condition for the difference of two closed convex subsets to be closed. It uses the concept of a recession cone of a non-empty convex subset ''S'', defined as: \operatorname S = \left\, where this set is a convex cone containing 0 \in X and satisfying S + \operatorname S = S. Note that if ''S'' is closed and convex then \operatorname S is closed and for all s_0 \in S, \operatorname S = \bigcap_ t (S - s_0). Theorem (Dieudonné). Let ''A'' and ''B'' be non-empty, closed, and convex subsets of a locally convex topological vector space such that \operatorname A \cap \operatorname B is a linear subspace. If ''A'' or ''B'' is locally compact then ''A'' − ''B'' is closed.


Generalizations and extensions for convexity

The notion of convexity in the Euclidean space may be generalized by modifying the definition in some or other aspects. The common name "generalized convexity" is used, because the resulting objects retain certain properties of convex sets.


Star-convex (star-shaped) sets

Let be a set in a real or complex vector space. is star convex (star-shaped) if there exists an in such that the line segment from to any point in is contained in . Hence a non-empty convex set is always star-convex but a star-convex set is not always convex.


Orthogonal convexity

An example of generalized convexity is orthogonal convexity. A set in the Euclidean space is called orthogonally convex or ortho-convex, if any segment parallel to any of the coordinate axes connecting two points of lies totally within . It is easy to prove that an intersection of any collection of orthoconvex sets is orthoconvex. Some other properties of convex sets are valid as well.


Non-Euclidean geometry

The definition of a convex set and a convex hull extends naturally to geometries which are not Euclidean by defining a geodesically convex set to be one that contains the geodesics joining any two points in the set.


Order topology

Convexity can be extended for a totally ordered set endowed with the
order topology In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, th ...
. Munkres, James; ''Topology'', Prentice Hall; 2nd edition (December 28, 1999). . Let . The subspace is a convex set if for each pair of points in such that , the interval is contained in . That is, is convex if and only if for all in , implies . A convex set is not connected in general: a counter-example is given by the subspace in , which is both convex and not connected.


Convexity spaces

The notion of convexity may be generalised to other objects, if certain properties of convexity are selected as axioms. Given a set , a convexity over is a collection of subsets of satisfying the following axioms: #The empty set and are in #The intersection of any collection from is in . #The union of a chain (with respect to the inclusion relation) of elements of is in . The elements of are called convex sets and the pair is called a convexity space. For the ordinary convexity, the first two axioms hold, and the third one is trivial. For an alternative definition of abstract convexity, more suited to
discrete geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...
, see the ''convex geometries'' associated with
antimatroid In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroi ...
s.


See also

*
Absorbing set In functional analysis and related areas of mathematics an absorbing set in a vector space is a set S which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorben ...
*
Bounded set (topological vector space) In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be ''inflated'' to include the set. A set that is not bounded is ...
*
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a compact convex set to itself there is a point x_0 such that f(x_0)=x_0. The simples ...
* Complex convexity * Convex hull * Convex series *
Convex metric space In mathematics, convex metric spaces are, intuitively, metric spaces with the property any "segment" joining two points in that space has other points in it besides the endpoints. Formally, consider a metric space (''X'', ''d'') and let ''x ...
*
Carathéodory's theorem (convex hull) Carathéodory's theorem is a theorem in convex geometry. It states that if a point x lies in the convex hull \mathrm(P) of a set P\subset \R^d, then x can be written as the convex combination of at most d+1 points in P. More sharply, x can be writ ...
*
Choquet theory In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set ''C''. Roughly speaking, every vector of ''C'' sho ...
* Helly's theorem * Holomorphically convex hull * Integrally-convex set * John ellipsoid * Pseudoconvexity * Radon's theorem *
Shapley–Folkman lemma The Shapley–Folkman lemma is a result in convex geometry that describes the Minkowski addition of sets in a vector space. It is named after mathematicians Lloyd Shapley and Jon Folkman, but was first published by the economist Ross ...
*
Symmetric set In mathematics, a nonempty subset of a group is said to be symmetric if it contains the inverses of all of its elements. Definition In set notation a subset S of a group G is called if whenever s \in S then the inverse of s also belongs to ...


References


External links

*
Lectures on Convex Sets
notes by Niels Lauritzen, at Aarhus University, March 2010. {{DEFAULTSORT:Convex Set Convex analysis Convex geometry