HOME

TheInfoList



OR:

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of
symbolic logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal sy ...
that differ from the systems used for
classical logic Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class ...
by more closely mirroring the notion of
constructive proof In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existe ...
. In particular, systems of intuitionistic logic do not assume the
law of the excluded middle In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradi ...
and
double negation elimination In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition ''A'' is logically equivalent to ''not (not ...
, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by
Arend Heyting __NOTOC__ Arend Heyting (; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician. Biography Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a foot ...
to provide a formal basis for
L. E. J. Brouwer Luitzen Egbertus Jan Brouwer (; ; 27 February 1881 – 2 December 1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher, who worked in topology, set theory, measure theory and c ...
's programme of
intuitionism In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of f ...
. From a
proof-theoretic Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Barwise (1978) consists of four corresponding parts, ...
perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the
BHK interpretation BHK is a three-letter abbreviation that may refer to: * BHK interpretation of intuitionistic predicate logic * Baby hamster kidney cells used in molecular biology * Bachelor of Human Kinetics (BHk) degree. * Baltische Historische Kommission, or ...
. Several systems of semantics for intuitionistic logic have been studied. One of these semantics mirrors classical
Boolean-valued semantics In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras w ...
but uses
Heyting algebra In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of '' ...
s in place of
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...
s. Another semantics uses Kripke models. These, however, are technical means for studying Heyting’s deductive system rather than formalizations of Brouwer’s original informal semantic intuitions. Semantical systems claiming to capture such intuitions, due to offering meaningful concepts of “constructive truth” (rather than merely validity or provability), are
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
’s dialectica interpretation,
Stephen Cole Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
’s
realizability In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way t ...
, Yurii Medvedev’s logic of finite problems, or Giorgi Japaridze’s computability logic. Yet such semantics persistently induce logics properly stronger than Heyting’s logic. Some authors have argued that this might be an indication of inadequacy of Heyting’s calculus itself, deeming the latter incomplete as a constructive logic.


Mathematical constructivism

In the semantics of classical logic,
propositional formula In propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional fo ...
e are assigned truth values from the two-element set \ ("true" and "false" respectively), regardless of whether we have direct
evidence Evidence for a proposition is what supports this proposition. It is usually understood as an indication that the supported proposition is true. What role evidence plays and how it is conceived varies from field to field. In epistemology, evidenc ...
for either case. This is referred to as the 'law of excluded middle', because it excludes the possibility of any truth value besides 'true' or 'false'. In contrast, propositional formulae in intuitionistic logic are ''not'' assigned a definite truth value and are ''only'' considered "true" when we have direct evidence, hence ''proof''. (We can also say, instead of the propositional formula being "true" due to direct evidence, that it is inhabited by a proof in the Curry–Howard sense.) Operations in intuitionistic logic therefore preserve justification, with respect to evidence and provability, rather than truth-valuation. Intuitionistic logic is a commonly-used tool in developing approaches to
constructivism Constructivism may refer to: Art and architecture * Constructivism (art), an early 20th-century artistic movement that extols art as a practice for social purposes * Constructivist architecture, an architectural movement in Russia in the 1920s a ...
in mathematics. The use of constructivist logics in general has been a controversial topic among mathematicians and philosophers (see, for example, the
Brouwer–Hilbert controversy In a controversy over the foundations of mathematics, in twentieth-century mathematics, L. E. J. Brouwer, a proponent of the constructivist school of intuitionism, opposed David Hilbert, a proponent of formalism. The debate concerned fundamenta ...
). A common objection to their use is the above-cited lack of two central rules of classical logic, the law of excluded middle and double negation elimination. These are considered to be so important to the practice of mathematics that
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
wrote of them: "Taking the principle of excluded middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of his fists. To prohibit existence statements and the principle of excluded middle is tantamount to relinquishing the science of mathematics altogether." Despite the serious challenges presented by the inability to utilize the valuable rules of excluded middle and double negation elimination, intuitionistic logic has practical use. One reason for this is that its restrictions produce proofs that have the
existence property In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). Disjunction property The disjunction property is satis ...
, making it also suitable for other forms of
mathematical constructivism In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove th ...
. Informally, this means that if there is a constructive proof that an object exists, that constructive proof may be used as an algorithm for generating an example of that object, a principle known as the
Curry–Howard correspondence In programming language theory and proof theory, the Curry–Howard correspondence (also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation) is the direct relati ...
between proofs and algorithms. One reason that this particular aspect of intuitionistic logic is so valuable is that it enables practitioners to utilize a wide range of computerized tools, known as
proof assistants In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor ...
. These tools assist their users in the verification (and generation) of large-scale proofs, whose size usually precludes the usual human-based checking that goes into publishing and reviewing a mathematical proof. As such, the use of proof assistants (such as Agda or
Coq Coq is an interactive theorem prover first released in 1989. It allows for expressing mathematical assertions, mechanically checks proofs of these assertions, helps find formal proofs, and extracts a certified program from the constructive proof ...
) is enabling modern mathematicians and logicians to develop and prove extremely complex systems, beyond those that are feasible to create and check solely by hand. One example of a proof that was impossible to satisfactorily verify without formal verification is the famous proof of the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sha ...
. This theorem stumped mathematicians for more than a hundred years, until a proof was developed that ruled out large classes of possible counterexamples, yet still left open enough possibilities that a computer program was needed to finish the proof. That proof was controversial for some time, but, later, it was verified using Coq.


Syntax

The
syntax In linguistics, syntax () is the study of how words and morphemes combine to form larger units such as phrases and sentences. Central concerns of syntax include word order, grammatical relations, hierarchical sentence structure ( constituenc ...
of formulas of intuitionistic logic is similar to
propositional logic Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations ...
or
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifi ...
. However, intuitionistic connectives are not definable in terms of each other in the same way as in
classical logic Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class ...
, hence their choice matters. In intuitionistic propositional logic (IPL) it is customary to use →, ∧, ∨, ⊥ as the basic connectives, treating ¬''A'' as an abbreviation for . In intuitionistic first-order logic both quantifiers ∃, ∀ are needed.


Weaker than classical logic

Intuitionistic logic can be understood as a weakening of classical logic, meaning that it is more conservative in what it allows a reasoner to infer, while not permitting any new inferences that could not be made under classical logic. Each theorem of intuitionistic logic is a theorem in classical logic, but not conversely. Many tautologies in classical logic are not theorems in intuitionistic logicin particular, as said above, one of intuitionistic logic's chief aims is to not affirm the law of the excluded middle so as to vitiate the use of non-constructive
proof by contradiction In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known a ...
, which can be used to furnish existence claims without providing explicit examples of the objects that it proves exist. We say "not affirm" because while it is not necessarily true that the law is upheld in any context, no counterexample can be given: such a counterexample would be an inference (inferring the negation of the law for a certain proposition) disallowed under classical logic and thus is not allowed in a strict weakening like intuitionistic logic. Indeed, the double negation of the law is retained as a tautology of the system: that is, it is a theorem that \neg\big(\neg (P \vee \neg P)\big) regardless of the proposition P. So the propositional calculus is always compatible with classical logic. The situation is more intricate for predicate logic formulas when quantified expressions are negated.


Sequent calculus

Gerhard Gentzen Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died o ...
discovered that a simple restriction of his system LK (his sequent calculus for classical logic) results in a system that is sound and complete with respect to intuitionistic logic. He called this system LJ. In LK any number of formulas is allowed to appear on the conclusion side of a sequent; in contrast LJ allows at most one formula in this position. Other derivatives of LK are limited to intuitionistic derivations but still allow multiple conclusions in a sequent. LJ' is one example.


Hilbert-style calculus

Intuitionistic logic can be defined using the following Hilbert-style calculus. This is similar to a way of axiomatizing classical propositional logic. In propositional logic, the inference rule is
modus ponens In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. It ...
* MP: from \phi and \phi \to \psi infer \psi and the axioms are * THEN-1: \phi \to (\chi \to \phi ) * THEN-2: (\phi \to (\chi \to \psi )) \to ((\phi \to \chi ) \to (\phi \to \psi )) * AND-1: \phi \land \chi \to \phi * AND-2: \phi \land \chi \to \chi * AND-3: \phi \to (\chi \to (\phi \land \chi )) * OR-1: \phi \to \phi \lor \chi * OR-2: \chi \to \phi \lor \chi * OR-3: (\phi \to \psi ) \to ((\chi \to \psi ) \to ((\phi \lor \chi) \to \psi )) * FALSE: \bot \to \phi To make this a system of first-order predicate logic, the generalization rules * \forall -GEN: from \psi \to \phi infer \psi \to (\forall x \ \phi ), if x is not free in \psi * \exists -GEN: from \phi \to \psi infer (\exists x \ \phi ) \to \psi , if x is not free in \psi are added, along with the axioms * PRED-1: (\forall x \ \phi (x)) \to \phi (t), if the term t is free for substitution for the variable x in \phi (i.e., if no occurrence of any variable in t becomes bound in \phi (t)) * PRED-2: \phi (t) \to (\exists x \ \phi (x)), with the same restriction as for PRED-1


Optional connectives


= Negation

= If one wishes to include a connective \lnot for negation rather than consider it an abbreviation for \phi \to \bot , it is enough to add: * NOT-1': (\phi \to \bot ) \to \lnot \phi * NOT-2': \lnot \phi \to (\phi \to \bot ) There are a number of alternatives available if one wishes to omit the connective \bot (false). For example, one may replace the three axioms FALSE, NOT-1', and NOT-2' with the two axioms * NOT-1: (\phi \to \chi ) \to ((\phi \to \lnot \chi ) \to \lnot \phi ) * NOT-2: \phi \to (\lnot \phi \to \chi ) as at . Alternatives to NOT-1 are (\phi \to \lnot \chi ) \to (\chi \to \lnot \phi ) or (\phi \to \lnot \phi ) \to \lnot \phi .


= Equivalence

= The connective \leftrightarrow for equivalence may be treated as an abbreviation, with \phi \leftrightarrow \chi standing for (\phi \to \chi ) \land (\chi \to \phi ). Alternatively, one may add the axioms * IFF-1: (\phi \leftrightarrow \chi ) \to (\phi \to \chi ) * IFF-2: (\phi \leftrightarrow \chi ) \to (\chi \to \phi ) * IFF-3: (\phi \to \chi ) \to ((\chi \to \phi ) \to (\phi \leftrightarrow \chi )) IFF-1 and IFF-2 can, if desired, be combined into a single axiom (\phi \leftrightarrow \chi ) \to ((\phi \to \chi ) \land (\chi \to \phi )) using conjunction.


Relation to classical logic

The system of classical logic is obtained by adding any one of the following axioms: * \phi \lor \lnot \phi (Law of the excluded middle. May also be formulated as (\phi \to \chi ) \to ((\lnot \phi \to \chi ) \to \chi ).) * \lnot \lnot \phi \to \phi (Double negation elimination) * ((\phi \to \chi ) \to \phi ) \to \phi (
Peirce's law In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that inv ...
) * (\lnot \phi \to \lnot \chi ) \to (\chi \to \phi ) (Law of contraposition) In general, one may take as the extra axiom any classical tautology that is not valid in the two-element
Kripke frame Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Jo ...
\circ\circ (in other words, that is not included in Smetanich's logic). Another relationship is given by the Gödel–Gentzen negative translation, which provides an
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is gi ...
of classical first-order logic into intuitionistic logic: a first-order formula is provable in classical logic if and only if its Gödel–Gentzen translation is provable intuitionistically. Therefore, intuitionistic logic can instead be seen as a means of extending classical logic with constructive semantics. In 1932,
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
defined a system of logics intermediate between classical and intuitionistic logic; Gödel logics are concomitantly known as
intermediate logic In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate l ...
s.


Admissible rules

In intuitionistic logic or a fixed theory using the logic, the situation can occur that an implication always hold metatheoretically, but not in the language. For example, in the pure propositional calculus, if (\neg A)\to(B\lor C) is provable, then so is (\neg A\to B)\lor(\neg A\to C). Another example is that (A\to B)\to(A\lor C) being provable always also means that so is \big((A\to B)\to A\big)\lor\big((A\to B)\to C\big). One says the system is closed under these implications as rules and they may be adopted.


Non-interdefinability of operators

In classical propositional logic, it is possible to take one of
conjunction Conjunction may refer to: * Conjunction (grammar), a part of speech * Logical conjunction, a mathematical operator ** Conjunction introduction, a rule of inference of propositional logic * Conjunction (astronomy), in which two astronomical bodies ...
,
disjunction In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor S ...
, or implication as primitive, and define the other two in terms of it together with
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
, such as in Łukasiewicz's three axioms of propositional logic. It is even possible to define all four in terms of a sole sufficient operator such as the Peirce arrow (NOR) or
Sheffer stroke In Boolean functions and propositional calculus, the Sheffer stroke denotes a logical operation that is equivalent to the negation of the conjunction operation, expressed in ordinary language as "not both". It is also called nand ("not and") o ...
(NAND). Similarly, in classical first-order logic, one of the quantifiers can be defined in terms of the other and negation. These are fundamentally consequences of the
law of bivalence In logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is call ...
, which makes all such connectives merely
Boolean function In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function ...
s. The law of bivalence is not required to hold in intuitionistic logic, only the
law of non-contradiction In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the s ...
. As a result, none of the basic connectives can be dispensed with, and the above axioms are all necessary. So most of the classical identities between connectives and quantifiers are only theorems of intuitionistic logic in one direction. Some of the theorems go in both directions, i.e. are equivalences, as subsequently discussed. Below follows a list of implications involving negations. Combining the axioms THEN-1 and THEN-2 above, (P\to\neg Q)\leftrightarrow(Q\to\neg P) follows, a conversion which can be used to obtain further implications. Existential versus universal quantification: * (\exists x \ \phi(x)) \to \neg (\forall x \ \neg \phi(x)) * (\exists x \ \neg \phi(x)) \to \neg (\forall x \ \phi(x)) And conversely, * (\forall x \ \neg \phi(x)) \leftrightarrow \neg (\exists x \ \phi(x)) * (\forall x \ \phi(x)) \to \neg (\exists x \ \neg \phi(x)) There are finite variations of those with just two propositions. Disjunction vs conjunction: * (\phi \vee \psi) \to \neg (\neg \phi \wedge \neg \psi) * (\neg \phi \vee \psi) \to \neg (\phi \wedge \neg \psi) * (\neg \phi \vee \neg \psi) \to \neg (\phi \wedge \psi) And conversely, * (\neg \phi \wedge \neg \psi) \leftrightarrow \neg (\phi \vee \psi) * (\phi \wedge \neg \psi) \to \neg (\neg \phi \vee \psi) * (\phi \wedge \psi) \to \neg (\neg \phi \vee \neg \psi) So negated statements are weak antecedents, and in turn not all of the classical
De Morgan's laws In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathem ...
hold. Going on, Conjunction vs. implication: * (\phi \wedge \psi) \to \neg (\phi \to \neg \psi) * (\phi \wedge \neg \psi) \to \neg (\phi \to \psi) And conversely, * (\phi \to \neg \psi) \leftrightarrow \neg (\phi \wedge \psi) * (\phi \to \psi) \to \neg (\phi \wedge \neg \psi) The formulas for \neg (\phi \wedge \psi) can be used to imply (\neg \phi \vee \neg \psi) \to (\phi \to \neg \psi) and one also validates the version with the positions of \phi and \neg\phi switched. The latter are forms of the
disjunctive syllogism In classical logic, disjunctive syllogism (historically known as ''modus tollendo ponens'' (MTP), Latin for "mode that affirms by denying") is a valid argument form which is a syllogism having a disjunctive statement for one of its premises. ...
for negated propositions, \neg\psi. A strenghtenend form still holds in intuitionistic logic, as follows. Disjunction versus implication: * (\phi \vee \psi) \to (\neg \phi \to \psi) * (\neg \phi \vee \psi) \to (\phi \to \psi) So, for example, intuitionistically "Either P or Q" is a stronger propositional formula than "If not P, then Q", whereas these are classically interchangeable. Such an implication for general \psi is not valid in
minimal logic Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion ...
. Equivalences: The above lists also contain equivalences. Firstly, the equivalence involving a conjunction and a disjunction stems from (P\lor Q)\to R actually being stronger than P\to R. Both sides of the equivalence can be understood as conjunctions of independent implications (of absurdity). In functional interpretations, it corresponds to if-clause constructions. So e.g. "Not (P or Q)" is equivalent to "Not P, and also not Q". Secondly, the equivalence involving an implication and a conjunction corresponds to
currying In mathematics and computer science, currying is the technique of translating the evaluation of a function that takes multiple arguments into evaluating a sequence of functions, each with a single argument. For example, currying a function f that ...
. Due to the symmetry of the conjunction connective, it again implies :(\phi \to \neg \psi) \leftrightarrow (\psi \to \neg \phi) Special cases of this conversion make up the previous lists. The symmetry of the conjunction can also understood as reason for why negation of \phi can be moved between antecedent and consequent in the first two lists above. The equivalences in the lists can be jointly generalized to the equivalence :\big(\forall x.\phi(x)\to (\psi(x)\to\chi)\big)\,\,\,\leftrightarrow\,\,\,\big(\exists x.\phi(x)\land \psi(x)\big)\to\chi which for \chi as \bot are two characterizations of separation. An equivalence itself is generally defined as, and then equivalent to, a conjunction of implications * (\phi\leftrightarrow \psi) \leftrightarrow \big((\phi \to \psi)\land(\psi\to\phi)\big) With it, such connectives become in turn definable from it: * (\phi\to\psi) \leftrightarrow ((\phi\lor\psi) \leftrightarrow \psi) * (\phi\to\psi) \leftrightarrow ((\phi\land\psi) \leftrightarrow \phi) * (\phi\land\psi) \leftrightarrow ((\phi\to\psi)\leftrightarrow\phi) * (\phi\land\psi) \leftrightarrow (((\phi\lor\psi)\leftrightarrow\psi)\leftrightarrow\phi) In turn, \ and \ are complete bases of intuitionistic connectives. Functionally complete connectives: As shown by Alexander V. Kuznetsov, either of the following connectives – the first one ternary, the second one quinary – is by itself functionally complete: either one can serve the role of a sole sufficient operator for intuitionistic propositional logic, thus forming an analog of the
Sheffer stroke In Boolean functions and propositional calculus, the Sheffer stroke denotes a logical operation that is equivalent to the negation of the conjunction operation, expressed in ordinary language as "not both". It is also called nand ("not and") o ...
from classical propositional logic: * \big((P\lor Q)\land\neg R\big)\lor\big(\neg P\land(Q\leftrightarrow R)\big) * P\to\big(Q\land\neg R\land(S\lor T)\big)


Semantics

The semantics are rather more complicated than for the classical case. A model theory can be given by Heyting algebras or, equivalently, by
Kripke semantics Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André ...
. Recently, a Tarski-like model theory was proved complete by Bob Constable, but with a different notion of completeness than classically. Unproved statements in intuitionistic logic are not given an intermediate truth value (as is sometimes mistakenly asserted). One can prove that such statements have no third truth value, a result dating back to Glivenko in 1928. Instead they remain of unknown truth value, until they are either proved or disproved. Statements are disproved by deducing a contradiction from them. A consequence of this point of view is that intuitionistic logic has no interpretation as a two-valued logic, nor even as a finite-valued logic, in the familiar sense. Although intuitionistic logic retains the trivial propositions \ from classical logic, each ''proof'' of a propositional formula is considered a valid propositional value, thus by Heyting's notion of propositions-as-sets, propositional formulae are (potentially non-finite) sets of their proofs.


Heyting algebra semantics

In classical logic, we often discuss the truth values that a formula can take. The values are usually chosen as the members of a
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...
. The
meet and join In mathematics, specifically order theory, the join of a subset S of a partially ordered set P is the supremum (least upper bound) of S, denoted \bigvee S, and similarly, the meet of S is the infimum (greatest lower bound), denoted \bigwedge S. I ...
operations in the Boolean algebra are identified with the ∧ and ∨ logical connectives, so that the value of a formula of the form ''A'' ∧ ''B'' is the meet of the value of ''A'' and the value of ''B'' in the Boolean algebra. Then we have the useful theorem that a formula is a valid proposition of classical logic if and only if its value is 1 for every valuation—that is, for any assignment of values to its variables. A corresponding theorem is true for intuitionistic logic, but instead of assigning each formula a value from a Boolean algebra, one uses values from a
Heyting algebra In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of '' ...
, of which Boolean algebras are a special case. A formula is valid in intuitionistic logic if and only if it receives the value of the top element for any valuation on any Heyting algebra. It can be shown that to recognize valid formulas, it is sufficient to consider a single Heyting algebra whose elements are the open subsets of the real line R. In this algebra we have: :\begin \text bot&=\emptyset \\ \text top&= \mathbf \\ \text \land B&= \text \cap \text \\ \text \lor B &= \text \cup \text \\ \text \to B&= \text \left ( \text \complement \cup \text \right ) \end where int(''X'') is the
interior Interior may refer to: Arts and media * ''Interior'' (Degas) (also known as ''The Rape''), painting by Edgar Degas * ''Interior'' (play), 1895 play by Belgian playwright Maurice Maeterlinck * ''The Interior'' (novel), by Lisa See * Interior de ...
of ''X'' and ''X'' its
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
. The last identity concerning ''A'' → ''B'' allows us to calculate the value of ¬''A'': :\begin \text neg A&= \text \to \bot\\ &= \text \left ( \text \complement \cup \text bot\right ) \\ &= \text \left ( \text \complement \cup \emptyset \right ) \\ &= \text \left ( \text \complement \right ) \end With these assignments, intuitionistically valid formulas are precisely those that are assigned the value of the entire line. For example, the formula ¬(''A'' ∧ ¬''A'') is valid, because no matter what set ''X'' is chosen as the value of the formula ''A'', the value of ¬(''A'' ∧ ¬''A'') can be shown to be the entire line: :\begin \text neg(A \land \neg A)&= \text \left ( \text \land \neg A\complement \right ) && \text neg B= \text\left ( \text \complement \right) \\ &= \text \left ( \left (\text \cap \text neg A\right )^\complement \right )\\ &= \text \left ( \left (\text \cap \text \left (\text \complement \right ) \right )^\complement \right ) \\ &= \text \left ( \left (X \cap \text \left (X^\complement \right ) \right )^\complement \right ) \\ &= \text \left (\emptyset^\complement \right ) && \text \left (X^\complement \right ) \subseteq X^\complement \\ &= \text (\mathbf) \\ &= \mathbf \end So the valuation of this formula is true, and indeed the formula is valid. But the law of the excluded middle, ''A'' ∨ ¬''A'', can be shown to be ''invalid'' by using a specific value of the set of positive real numbers for ''A'': :\begin \text \lor \neg A&= \text \cup \text neg A\\ &= \text \cup \text \left ( \text \complement \right) && \text neg B= \text\left ( \text \complement \right) \\ &= \ \cup \text \left ( \^\complement \right ) \\ &= \ \cup \text \left ( \ \right) \\ &= \ \cup \ \\ &=\ \\ &\neq \mathbf \end The interpretation of any intuitionistically valid formula in the infinite Heyting algebra described above results in the top element, representing true, as the valuation of the formula, regardless of what values from the algebra are assigned to the variables of the formula. Conversely, for every invalid formula, there is an assignment of values to the variables that yields a valuation that differs from the top element. No finite Heyting algebra has the second of these two properties.


Kripke semantics

Building upon his work on semantics of
modal logic Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other ...
,
Saul Kripke Saul Aaron Kripke (; November 13, 1940 – September 15, 2022) was an American philosopher and logician in the analytic tradition. He was a Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emer ...
created another semantics for intuitionistic logic, known as Kripke semantics or relational semantics.Intuitionistic Logic
Written b
Joan Moschovakis
Published in ''Stanford Encyclopedia of Philosophy''.


Tarski-like semantics

It was discovered that Tarski-like semantics for intuitionistic logic were not possible to prove complete. However, Robert Constable has shown that a weaker notion of completeness still holds for intuitionistic logic under a Tarski-like model. In this notion of completeness we are concerned not with all of the statements that are true of every model, but with the statements that are true ''in the same way'' in every model. That is, a single proof that the model judges a formula to be true must be valid for every model. In this case, there is not only a proof of completeness, but one that is valid according to intuitionistic logic.


Relation to other logics

Intuitionistic logic is related by duality to a
paraconsistent logic A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" syst ...
known as ''Brazilian'', ''anti-intuitionistic'' or ''dual-intuitionistic logic''. The subsystem of intuitionistic logic with the FALSE axiom removed is known as
minimal logic Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion ...
.


Relation to many-valued logic

Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
's work involving
many-valued logic Many-valued logic (also multi- or multiple-valued logic) refers to a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "fals ...
showed in 1932 that intuitionistic logic is not a finite-valued logic. (See the section titled Heyting algebra semantics above for an infinite-valued logic interpretation of intuitionistic logic.)


Relation to intermediate logics

Any finite Heyting algebra that is not equivalent to a Boolean algebra defines (semantically) an
intermediate logic In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate l ...
. On the other hand, validity of formulae in pure intuitionistic logic is not tied to any individual Heyting algebra but relates to any and all Heyting algebras at the same time.


Relation to modal logic

Any formula of the intuitionistic propositional logic (IPC) may be translated into the
normal modal logic In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautologies; * All instances of the Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed under: * Detachment rule (''modus p ...
S4 as follows: :\begin \bot^* &= \bot \\ A^* &= \Box A && \text A \text \\ (A \wedge B)^*&= A^* \wedge B^* \\ (A \vee B)^* &= A^* \vee B^* \\ (A \to B)^*&= \Box \left (A^* \to B^* \right ) \\ (\neg A)^*&= \Box(\neg (A^*)) && \neg A := A \to \bot \end and it has been demonstratedLévy, Michel (2011)
''Logique modale propositionnelle S4 et logique intuitioniste propositionnelle''
pp. 4–5.
that the translated formula is valid in the propositional modal logic S4 if and only if the original formula is valid in IPC. The above set of formulae are called the
Gödel–McKinsey–Tarski translation In logic, a modal companion of a superintuitionistic (intermediate) logic ''L'' is a normal modal logic that interprets ''L'' by a certain canonical translation, described below. Modal companions share various properties of the original intermedi ...
. There is also an intuitionistic version of modal logic S4 called Constructive Modal Logic CS4.Natasha Alechina, Michael Mendler,
Valeria de Paiva Valeria Correa Vaz de Paiva is a Brazilian mathematician, logician, and computer scientist. Her work includes research on logical approaches to computation, especially using category theory, knowledge representation and natural language semanti ...
, and Eike Ritter
''Categorical and Kripke Semantics for Constructive S4 Modal Logic''
/ref>


Lambda calculus

There is an extended Curry–Howard isomorphism between IPC and
simply-typed lambda calculus The simply typed lambda calculus (\lambda^\to), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor (\to) that builds function types. It is the canonical and simplest example of a typed lambda cal ...
.


See also

*
BHK interpretation BHK is a three-letter abbreviation that may refer to: * BHK interpretation of intuitionistic predicate logic * Baby hamster kidney cells used in molecular biology * Bachelor of Human Kinetics (BHk) degree. * Baltische Historische Kommission, or ...
* Computability logic *
Constructive proof In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existe ...
*
Curry–Howard correspondence In programming language theory and proof theory, the Curry–Howard correspondence (also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation) is the direct relati ...
*
Game semantics Game semantics (german: dialogische Logik, translated as '' dialogical logic'') is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player ...
*
Inhabited set In constructive mathematics, a set A is inhabited if there exists an element a \in A. In classical mathematics, this is the same as the set being nonempty; however, this equivalence is not valid in intuitionistic logic (or constructive logic). ...
*
Intermediate logics In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate ...
*
Intuitionistic type theory Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician an ...
*
Kripke semantics Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André ...
*
Linear logic Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also b ...
*
Paraconsistent logic A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" syst ...
*
Relevance theory Relevance theory is a framework for understanding the interpretation of utterances. It was first proposed by Dan Sperber and Deirdre Wilson, and is used within cognitive linguistics and pragmatics. The theory was originally inspired by the work o ...
* Smooth infinitesimal analysis


Notes


References

* van Dalen, Dirk, 2001, "Intuitionistic Logic", in Goble, Lou, ed., ''The Blackwell Guide to Philosophical Logic''. Blackwell * Morten H. Sørensen, Paweł Urzyczyn, 2006, ''Lectures on the Curry-Howard Isomorphism'' (chapter 2: "Intuitionistic Logic"). Studies in Logic and the Foundations of Mathematics vol. 149, Elsevier * W. A. Carnielli (with A. B. M. Brunner
"Anti-intuitionism and paraconsistency"
''Journal of Applied Logic Volume'' 3, Issue 1, Mar 2005, pp. 161–184 *
Arend Heyting __NOTOC__ Arend Heyting (; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician. Biography Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a foot ...
, 1930, "Die formalen Regeln der intuitionistischen Logik," in three parts, ''Sitzungsberichte der preussischen Akademie der Wissenschaften'': 42–71, 158–169.


External links

* ''
Stanford Encyclopedia of Philosophy The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. ...
'':
Intuitionistic Logic
by Joan Moschovakis
Intuitionistic Logic
by Nick Bezhanishvili and Dick de Jongh (from the Institute for Logic, Language and Computation at the
University of Amsterdam The University of Amsterdam (abbreviated as UvA, nl, Universiteit van Amsterdam) is a public research university located in Amsterdam, Netherlands. The UvA is one of two large, publicly funded research universities in the city, the other bei ...
)
Semantical Analysis of Intuitionistic Logic I
by Saul A. Kripke from ''Harvard University, Cambridge, Mass., USA''
Intuitionistic Logic
by ''
Dirk van Dalen Dirk van Dalen (born 20 December 1932, Amsterdam) is a Dutch mathematician and historian of science. Van Dalen studied mathematics and physics and astronomy at the University of Amsterdam. Inspired by the work of Brouwer and Heyting, he received ...
''
The discovery of E. W. Beth's semantics for intuitionistic logic
by A. S. Troelstra and P. van Ulsen
Expressing Database Queries with Intuitionistic Logic
by Anthony J. Bonner. L. Thorne McCarty. Kumar Vadaparty. Rutgers University, Department of Computer Science
Tableaux'method for intuitionistic logic through S4-translation
tests the intuitionistic validity of propositional formulae; provided by the Laboratoire d'Informatique de
Grenoble lat, Gratianopolis , commune status = Prefecture and commune , image = Panorama grenoble.png , image size = , caption = From upper left: Panorama of the city, Grenoble’s cable cars, place Saint- ...
*
The Oxford Handbook of Philosophy of Mathematics and Logic
'
"Intuitionism in Mathematics"
by David Charles McCarty {{Authority control Logic in computer science Non-classical logic Constructivism (mathematics) Systems of formal logic Intuitionism