HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a conformal map is a function that locally preserves
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in U if it preserves angles between directed curves through u_0, as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the can ...
. The conformal property may be described in terms of the
Jacobian In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: * Jacobian matrix and determinant * Jacobian elliptic functions * Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähle ...
derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a
rotation matrix In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix :R = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \ ...
(
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix. For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types. The notion of conformality generalizes in a natural way to maps between Riemannian or semi-Riemannian manifolds.


Conformal maps in two dimensions

If U is an
open subset In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suff ...
of the complex plane \mathbb, then a function f:U\to\mathbb is conformal
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
it is holomorphic and its
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
is everywhere non-zero on U. If f is antiholomorphic ( conjugate to a holomorphic function), it preserves angles but reverses their orientation. In the literature, there is another definition of conformal: a mapping f which is one-to-one and holomorphic on an open set in the plane. The open mapping theorem forces the inverse function (defined on the image of f) to be holomorphic. Thus, under this definition, a map is conformal
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
it is biholomorphic. The two definitions for conformal maps are not equivalent. Being one-to-one and holomorphic implies having a non-zero derivative. However, the exponential function is a holomorphic function with a nonzero derivative, but is not one-to-one since it is periodic. The Riemann mapping theorem, one of the profound results of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, states that any non-empty open simply connected proper subset of \mathbb admits a bijective conformal map to the open unit disk in \mathbb.


Global conformal maps on the Riemann sphere

A map of the
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers ...
onto itself is conformal if and only if it is a Möbius transformation. The complex conjugate of a Möbius transformation preserves angles, but reverses the orientation. For example, circle inversions.


Conformality with respect to three types of angles

In plane geometry there are three types of angles that may be preserved in a conformal map. Each is hosted by its own real algebra, ordinary complex numbers,
split-complex number In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
s, and dual numbers. The conformal maps are described by linear fractional transformations in each case.


Conformal maps in three or more dimensions


Riemannian geometry

In Riemannian geometry, two Riemannian metrics g and h on a smooth manifold M are called conformally equivalent if g = u h for some positive function u on M. The function u is called the conformal factor. A diffeomorphism between two Riemannian manifolds is called a conformal map if the pulled back metric is conformally equivalent to the original one. For example,
stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter thro ...
of a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
onto the plane augmented with a
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. ...
is a conformal map. One can also define a conformal structure on a smooth manifold, as a class of conformally equivalent Riemannian metrics.


Euclidean space

A classical theorem of Joseph Liouville shows that there are much fewer conformal maps in higher dimensions than in two dimensions. Any conformal map from an open subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
into the same Euclidean space of dimension three or greater can be composed from three types of transformations: a homothety, an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' ...
, and a special conformal transformation.


Applications


Cartography

In
cartography Cartography (; from grc, χάρτης , "papyrus, sheet of paper, map"; and , "write") is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an i ...
, several named
map projection In cartography, map projection is the term used to describe a broad set of transformations employed to represent the two-dimensional curved surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and l ...
s, including the
Mercator projection The Mercator projection () is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because it is unique in representing north as up and s ...
and the
stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter thro ...
are conformal. They are specially useful for use in marine navigation because of its unique property of representing any course of constant bearing as a straight segment. Such a course, known as a rhumb (or, mathematically, a loxodrome) is preferred in marine navigation because ships can sail in a constant compass direction.


Physics and engineering

Conformal mappings are invaluable for solving problems in engineering and physics that can be expressed in terms of functions of a complex variable yet exhibit inconvenient geometries. By choosing an appropriate mapping, the analyst can transform the inconvenient geometry into a much more convenient one. For example, one may wish to calculate the electric field, E(z), arising from a point charge located near the corner of two conducting planes separated by a certain angle (where z is the complex coordinate of a point in 2-space). This problem ''per se'' is quite clumsy to solve in closed form. However, by employing a very simple conformal mapping, the inconvenient angle is mapped to one of precisely \pi radians, meaning that the corner of two planes is transformed to a straight line. In this new domain, the problem (that of calculating the electric field impressed by a point charge located near a conducting wall) is quite easy to solve. The solution is obtained in this domain, E(w), and then mapped back to the original domain by noting that w was obtained as a function (''viz''., the composition of E and w) of z, whence E(w) can be viewed as E(w(z)), which is a function of z, the original coordinate basis. Note that this application is not a contradiction to the fact that conformal mappings preserve angles, they do so only for points in the interior of their domain, and not at the boundary. Another example is the application of conformal mapping technique for solving the
boundary value problem In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to t ...
of liquid sloshing in tanks. If a function is
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', t ...
(that is, it satisfies
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \na ...
\nabla^2 f=0) over a plane domain (which is two-dimensional), and is transformed via a conformal map to another plane domain, the transformation is also harmonic. For this reason, any function which is defined by a potential can be transformed by a conformal map and still remain governed by a potential. Examples in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
of equations defined by a potential include the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical ...
, the
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational pheno ...
, and, in
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) a ...
, potential flow, which is an approximation to fluid flow assuming constant
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, zero
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
, and irrotational flow. One example of a fluid dynamic application of a conformal map is the
Joukowsky transform In applied mathematics, the Joukowsky transform, named after Nikolai Zhukovsky (who published it in 1910), is a conformal map historically used to understand some principles of airfoil design. The transform is : z = \zeta + \frac, where z = x ...
that can be used to examine the field of flow around a Joukowsky airfoil. Conformal maps are also valuable in solving nonlinear partial differential equations in some specific geometries. Such analytic solutions provide a useful check on the accuracy of numerical simulations of the governing equation. For example, in the case of very viscous free-surface flow around a semi-infinite wall, the domain can be mapped to a half-plane in which the solution is one-dimensional and straightforward to calculate. For discrete systems, Noury and Yang presented a way to convert discrete systems root locus into continuous root locus through a well-know conformal mapping in geometry (aka inversion mapping).


Maxwell's equations

Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
are preserved by Lorentz transformations which form a group including circular and hyperbolic rotations. The latter are sometimes called Lorentz boosts to distinguish them from circular rotations. All these transformations are conformal since hyperbolic rotations preserve hyperbolic angle, (called
rapidity In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with d ...
) and the other rotations preserve circular angle. The introduction of translations in the Poincare group again preserves angles. A larger group of conformal maps for relating solutions of Maxwell's equations was identified by Ebenezer Cunningham (1908) and
Harry Bateman Harry Bateman FRS (29 May 1882 – 21 January 1946) was an English mathematician with a specialty in differential equations of mathematical physics. With Ebenezer Cunningham, he expanded the views of spacetime symmetry of Lorentz and Poinca ...
(1910). Their training at Cambridge University had given them facility with the
method of image charges The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary ...
and associated methods of images for spheres and inversion. As recounted by Andrew Warwick (2003) ''Masters of Theory'': : Each four-dimensional solution could be inverted in a four-dimensional hyper-sphere of pseudo-radius K in order to produce a new solution. Warwick highlights this "new theorem of relativity" as a Cambridge response to Einstein, and as founded on exercises using the method of inversion, such as found in
James Hopwood Jeans Sir James Hopwood Jeans (11 September 187716 September 1946) was an English physicist, astronomer and mathematician. Early life Born in Ormskirk, Lancashire, the son of William Tulloch Jeans, a parliamentary correspondent and author. Jeans ...
textbook ''Mathematical Theory of Electricity and Magnetism''.


General relativity

In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, conformal maps are the simplest and thus most common type of causal transformations. Physically, these describe different universes in which all the same events and interactions are still (causally) possible, but a new additional force is necessary to effect this (that is, replication of all the same trajectories would necessitate departures from
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connecti ...
motion because the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
is different). It is often used to try to make models amenable to extension beyond curvature singularities, for example to permit description of the universe even before the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
.


See also

* Biholomorphic map * Carathéodory's theorem – A conformal map extends continuously to the boundary * Penrose diagram * Schwarz–Christoffel mapping – a conformal transformation of the upper half-plane onto the interior of a simple polygon * Special linear group – transformations that preserve volume (as opposed to angles) and orientation


References


Further reading

* * Constantin Carathéodory (1932) ''Conformal Representation'', Cambridge Tracts in Mathematics and Physics * * * * *


External links


Interactive visualizations of many conformal maps

Conformal Maps
by Michael Trott, Wolfram Demonstrations Project.
Conformal Mapping images of current flow
in different geometries without and with magnetic field by Gerhard Brunthaler.
Conformal Transformation: from Circle to Square

Online Conformal Map Grapher

Joukowski Transform Interactive WebApp
{{Authority control Riemannian geometry Map projections Angle