HOME

TheInfoList



OR:

In mathematics, specifically
general topology In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometri ...
, compactness is a property that seeks to generalize the notion of a closed and bounded subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be
equivalent Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry * Equivalence class (music) *'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *''Equiva ...
in other topological spaces. One such generalization is that a topological space is ''sequentially'' compact if every
infinite sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called t ...
of points sampled from the space has an infinite
subsequence In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence \langle A,B,D \rangle is a ...
that converges to some point of the space. The
Bolzano–Weierstrass theorem In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space \R^n. The theorem states that each ...
states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval , some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence accumulate to 0 (while others accumulate to 1). The same set of points would not accumulate to any point of the open unit interval , so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering \mathbb^1 (the real number line), the sequence of points has no subsequence that converges to any real number. Compactness was formally introduced by Maurice Fréchet in 1906 to generalize the Bolzano–Weierstrass theorem from spaces of geometrical points to spaces of functions. The
Arzelà–Ascoli theorem The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interv ...
and the
Peano existence theorem In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees t ...
exemplify applications of this notion of compactness to classical analysis. Following its initial introduction, various equivalent notions of compactness, including sequential compactness and
limit point compact In mathematics, a topological space ''X'' is said to be limit point compact or weakly countably compact if every infinite subset of ''X'' has a limit point in ''X''. This property generalizes a property of compact spaces. In a metric space, limit ...
ness, were developed in general metric spaces. In general topological spaces, however, these notions of compactness are not necessarily equivalent. The most useful notion — and the standard definition of the unqualified term ''compactness'' — is phrased in terms of the existence of finite families of open sets that " cover" the space in the sense that each point of the space lies in some set contained in the family. This more subtle notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. T ...
s. In spaces that are compact in this sense, it is often possible to patch together information that holds locally — that is, in a neighborhood of each point — into corresponding statements that hold throughout the space, and many theorems are of this character. The term compact set is sometimes used as a synonym for compact space, but also often refers to a compact subspace of a topological space.


Historical development

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano (
1817 Events January–March * January 1 – Sailing through the Sandwich Islands, Otto von Kotzebue discovers New Year Island. * January 19 – An army of 5,423 soldiers, led by General José de San Martín, starts crossing the ...
) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contai ...
. Bolzano's proof relied on the
method of bisection In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and t ...
: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts — until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics ...
. In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and
Cesare Arzelà Cesare Arzelà (6 March 1847 – 15 March 1912) was an Italian mathematician who taught at the University of Bologna and is recognized for his contributions in the theory of functions, particularly for his characterization of sequences of continu ...
. The culmination of their investigations, the
Arzelà–Ascoli theorem The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interv ...
, was a generalization of the Bolzano–Weierstrass theorem to families of continuous functions, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of
integral equation In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ...
s, as investigated by David Hilbert and
Erhard Schmidt Erhard Schmidt (13 January 1876 – 6 December 1959) was a Baltic German mathematician whose work significantly influenced the direction of mathematics in the twentieth century. Schmidt was born in Tartu (german: link=no, Dorpat), in the Govern ...
. For a certain class of
Green's functions In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if \operatorname is the linear differential ...
coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of
mean convergence In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to ...
— or convergence in what would later be dubbed a Hilbert space. This ultimately led to the notion of a
compact operator In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact c ...
as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in
1906 Events January–February * January 12 – Persian Constitutional Revolution: A nationalistic coalition of merchants, religious leaders and intellectuals in Persia forces the shah Mozaffar ad-Din Shah Qajar to grant a constitution, ...
, had distilled the essence of the Bolzano–Weierstrass property and coined the term ''compactness'' to refer to this general phenomenon (he used the term already in his 1904 paper which led to the famous 1906 thesis). However, a different notion of compactness altogether had also slowly emerged at the end of the 19th century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870,
Eduard Heine Heinrich Eduard Heine (16 March 1821 – 21 October 1881) was a German mathematician. Heine became known for results on special functions and in real analysis. In particular, he authored an important treatise on spherical harmonics and Legen ...
showed that a continuous function defined on a closed and bounded interval was in fact
uniformly continuous In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. In ...
. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by Émile Borel (
1895 Events January–March * January 5 – Dreyfus affair: French officer Alfred Dreyfus is stripped of his army rank, and sentenced to life imprisonment on Devil's Island. * January 12 – The National Trust for Places of Histor ...
), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue (
1904 Events January * January 7 – The distress signal ''CQD'' is established, only to be replaced 2 years later by ''SOS''. * January 8 – The Blackstone Library is dedicated, marking the beginning of the Chicago Public Library syst ...
). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers. This property was significant because it allowed for the passage from local information about a set (such as the continuity of a function) to global information about the set (such as the uniform continuity of a function). This sentiment was expressed by , who also exploited it in the development of the integral now bearing his name. Ultimately, the Russian school of point-set topology, under the direction of Pavel Alexandrov and Pavel Urysohn, formulated Heine–Borel compactness in a way that could be applied to the modern notion of a topological space. showed that the earlier version of compactness due to Fréchet, now called (relative) sequential compactness, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.


Basic examples

Any finite space is compact; a finite subcover can be obtained by selecting, for each point, an open set containing it. A nontrivial example of a compact space is the (closed) unit interval of real numbers. If one chooses an infinite number of distinct points in the unit interval, then there must be some accumulation point in that interval. For instance, the odd-numbered terms of the sequence get arbitrarily close to 0, while the even-numbered ones get arbitrarily close to 1. The given example sequence shows the importance of including the
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film *Boundary (cricket), the edge of the pla ...
points of the interval, since the limit points must be in the space itself — an open (or half-open) interval of the real numbers is not compact. It is also crucial that the interval be bounded, since in the interval , one could choose the sequence of points , of which no sub-sequence ultimately gets arbitrarily close to any given real number. In two dimensions, closed disks are compact since for any infinite number of points sampled from a disk, some subset of those points must get arbitrarily close either to a point within the disc, or to a point on the boundary. However, an open disk is not compact, because a sequence of points can tend to the boundary — without getting arbitrarily close to any point in the interior. Likewise, spheres are compact, but a sphere missing a point is not since a sequence of points can still tend to the missing point, thereby not getting arbitrarily close to any point ''within'' the space. Lines and planes are not compact, since one can take a set of equally-spaced points in any given direction without approaching any point.


Definitions

Various definitions of compactness may apply, depending on the level of generality. A subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
in particular is called compact if it is closed and bounded. This implies, by the
Bolzano–Weierstrass theorem In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space \R^n. The theorem states that each ...
, that any infinite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
from the set has a
subsequence In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence \langle A,B,D \rangle is a ...
that converges to a point in the set. Various equivalent notions of compactness, such as sequential compactness and
limit point compact In mathematics, a topological space ''X'' is said to be limit point compact or weakly countably compact if every infinite subset of ''X'' has a limit point in ''X''. This property generalizes a property of compact spaces. In a metric space, limit ...
ness, can be developed in general metric spaces. In contrast, the different notions of compactness are not equivalent in general topological spaces, and the most useful notion of compactness — originally called ''bicompactness'' — is defined using covers consisting of open sets (see ''Open cover definition'' below). That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the Heine–Borel theorem. Compactness, when defined in this manner, often allows one to take information that is known locally — in a
neighbourhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
of each point of the space — and to extend it to information that holds globally throughout the space. An example of this phenomenon is Dirichlet's theorem, to which it was originally applied by Heine, that a continuous function on a compact interval is
uniformly continuous In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. In ...
; here, continuity is a local property of the function, and uniform continuity the corresponding global property.


Open cover definition

Formally, a topological space is called ''compact'' if each of its open covers has a
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
subcover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ...
. That is, is compact if for every collection of open subsets of such that :X = \bigcup_x, there is a finite subcollection ⊆ such that :X = \bigcup_ x\ . Some branches of mathematics such as algebraic geometry, typically influenced by the French school of Bourbaki, use the term ''quasi-compact'' for the general notion, and reserve the term ''compact'' for topological spaces that are both Hausdorff and ''quasi-compact''. A compact set is sometimes referred to as a ''compactum'', plural ''compacta''.


Compactness of subsets

A subset of a topological space is said to be compact if it is compact as a subspace (in the
subspace topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
). That is, is compact if for every arbitrary collection of open subsets of such that :K \subseteq \bigcup_ c\ , there is a finite subcollection ⊆ such that :K \subseteq \bigcup_ c\ . Compactness is a "topological" property. That is, if K \subset Z \subset Y, with subset equipped with the subspace topology, then is compact in if and only if is compact in .


Characterization

If is a topological space then the following are equivalent: # is compact; i.e., every open cover of has a finite
subcover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ...
. # has a sub-base such that every cover of the space, by members of the sub-base, has a finite subcover ( Alexander's sub-base theorem). # is Lindelöf and countably compact. # Any collection of closed subsets of with the
finite intersection property In general topology, a branch of mathematics, a non-empty family ''A'' of subsets of a set X is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of A is non-empty. It has the strong finite inters ...
has nonempty intersection. # Every
net Net or net may refer to: Mathematics and physics * Net (mathematics), a filter-like topological generalization of a sequence * Net, a linear system of divisors of dimension 2 * Net (polyhedron), an arrangement of polygons that can be folded up ...
on has a convergent subnet (see the article on nets for a proof). # Every
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
on has a convergent refinement. # Every net on has a cluster point. # Every filter on has a cluster point. # Every
ultrafilter In the mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a maximal filter on P; that is, a proper filter on P that cannot be enlarged to a bigger proper filter o ...
on converges to at least one point. # Every infinite subset of has a complete accumulation point. # For every topological space , the projection X \times Y \to Y is a closed mapping (see
proper map In mathematics, a function between topological spaces is called proper if inverse images of compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. Definition There are several competing definit ...
). Bourbaki defines a compact space (quasi-compact space) as a topological space where each filter has a cluster point (i.e., 8. in the above).


Euclidean space

For any subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, is compact if and only if it is closed and bounded; this is the Heine–Borel theorem. As a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
is a metric space, the conditions in the next subsection also apply to all of its subsets. Of all of the equivalent conditions, it is in practice easiest to verify that a subset is closed and bounded, for example, for a closed interval or closed -ball.


Metric spaces

For any metric space , the following are equivalent (assuming countable choice): # is compact. # is complete and
totally bounded In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size� ...
(this is also equivalent to compactness for
uniform space In the mathematical field of topology, a uniform space is a set with a uniform structure. Uniform spaces are topological spaces with additional structure that is used to define uniform properties such as completeness, uniform continuity and unifo ...
s). # is sequentially compact; that is, every
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
in has a convergent subsequence whose limit is in (this is also equivalent to compactness for
first-countable In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base) ...
uniform space In the mathematical field of topology, a uniform space is a set with a uniform structure. Uniform spaces are topological spaces with additional structure that is used to define uniform properties such as completeness, uniform continuity and unifo ...
s). # is
limit point compact In mathematics, a topological space ''X'' is said to be limit point compact or weakly countably compact if every infinite subset of ''X'' has a limit point in ''X''. This property generalizes a property of compact spaces. In a metric space, limit ...
(also called weakly countably compact); that is, every infinite subset of has at least one
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contai ...
in . # is countably compact; that is, every countable open cover of has a finite subcover. # is an image of a continuous function from the Cantor set. # Every decreasing nested sequence of nonempty closed subsets in has a nonempty intersection. # Every increasing nested sequence of proper open subsets in fails to cover . A compact metric space also satisfies the following properties: # Lebesgue's number lemma: For every open cover of , there exists a number such that every subset of of diameter < is contained in some member of the cover. # is second-countable, separable and Lindelöf – these three conditions are equivalent for metric spaces. The converse is not true; e.g., a countable discrete space satisfies these three conditions, but is not compact. # is closed and bounded (as a subset of any metric space whose restricted metric is ). The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but not totally bounded.


Ordered Spaces

For an ordered space (i.e. a totally ordered set equipped with the order topology), the following are equivalent: # is compact. # Every subset of has a supremum (i.e. a least upper bound) in . # Every subset of has an infimum (i.e. a greatest lower bound) in . # Every nonempty closed subset of has a maximum and a minimum element. An ordered space satisfying (any one of) these conditions is called a complete lattice. In addition, the following are equivalent for all ordered spaces , and (assuming countable choice) are true whenever is compact. (The converse in general fails if is not also metrizable.): # Every sequence in has a subsequence that converges in . # Every monotone increasing sequence in converges to a unique limit in . # Every monotone decreasing sequence in converges to a unique limit in . # Every decreasing nested sequence of nonempty closed subsets ⊇ ⊇ ... in has a nonempty intersection. # Every increasing nested sequence of proper open subsets ⊆ ⊆ ... in fails to cover .


Characterization by continuous functions

Let be a topological space and the ring of real continuous functions on . For each , the evaluation map \operatorname_p\colon C(X)\to \mathbb given by is a ring homomorphism. The
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
of is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
, since the
residue field In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a ...
is the field of real numbers, by the
first isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist fo ...
. A topological space is
pseudocompact In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of ps ...
if and only if every maximal ideal in has residue field the real numbers. For
completely regular space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is ...
s, this is equivalent to every maximal ideal being the kernel of an evaluation homomorphism. There are pseudocompact spaces that are not compact, though. In general, for non-pseudocompact spaces there are always maximal ideals in such that the residue field is a ( non-Archimedean) hyperreal field. The framework of
non-standard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta ...
allows for the following alternative characterization of compactness: a topological space is compact if and only if every point of the natural extension is infinitely close to a point of (more precisely, is contained in the
monad Monad may refer to: Philosophy * Monad (philosophy), a term meaning "unit" **Monism, the concept of "one essence" in the metaphysical and theological theory ** Monad (Gnosticism), the most primal aspect of God in Gnosticism * ''Great Monad'', a ...
of ).


Hyperreal definition

A space is compact if its hyperreal extension (constructed, for example, by the
ultrapower construction In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers ...
) has the property that every point of is infinitely close to some point of . For example, an open real interval is not compact because its hyperreal extension contains infinitesimals, which are infinitely close to 0, which is not a point of .


Sufficient conditions

* A closed subset of a compact space is compact. * A finite
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
of compact sets is compact. * A continuous image of a compact space is compact. * The intersection of any non-empty collection of compact subsets of a Hausdorff space is compact (and closed); ** If is not Hausdorff then the intersection of two compact subsets may fail to be compact (see footnote for example). * The
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of any collection of compact spaces is compact. (This is
Tychonoff's theorem In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is trans ...
, which is equivalent to the axiom of choice.) * In a
metrizable space In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) s ...
, a subset is compact if and only if it is
sequentially compact In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notio ...
(assuming countable choice) * A finite set endowed with any topology is compact.


Properties of compact spaces

* A compact subset of a
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
is closed. ** If is not Hausdorff then a compact subset of may fail to be a closed subset of (see footnote for example). ** If is not Hausdorff then the closure of a compact set may fail to be compact (see footnote for example). * In any
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(TVS), a compact subset is complete. However, every non-Hausdorff TVS contains compact (and thus complete) subsets that are ''not'' closed. * If and are disjoint compact subsets of a Hausdorff space , then there exist disjoint open set and in such that and . * A continuous bijection from a compact space into a Hausdorff space is a homeomorphism. * A compact Hausdorff space is
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
and regular. * If a space is compact and Hausdorff, then no finer topology on is compact and no coarser topology on is Hausdorff. * If a subset of a metric space is compact then it is -bounded.


Functions and compact spaces

Since a continuous image of a compact space is compact, the extreme value theorem holds for such spaces: a continuous real-valued function on a nonempty compact space is bounded above and attains its supremum. (Slightly more generally, this is true for an upper semicontinuous function.) As a sort of converse to the above statements, the pre-image of a compact space under a
proper map In mathematics, a function between topological spaces is called proper if inverse images of compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. Definition There are several competing definit ...
is compact.


Compactifications

Every topological space is an open
dense subspace In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ra ...
of a compact space having at most one point more than , by the Alexandroff one-point compactification. By the same construction, every locally compact Hausdorff space is an open dense subspace of a compact Hausdorff space having at most one point more than .


Ordered compact spaces

A nonempty compact subset of the real numbers has a greatest element and a least element. Let be a simply ordered set endowed with the
order topology In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, th ...
. Then is compact if and only if is a complete lattice (i.e. all subsets have suprema and infima).


Examples

* Any finite topological space, including the empty set, is compact. More generally, any space with a finite topology (only finitely many open sets) is compact; this includes in particular the
trivial topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
. * Any space carrying the
cofinite topology In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocoun ...
is compact. * Any locally compact Hausdorff space can be turned into a compact space by adding a single point to it, by means of Alexandroff one-point compactification. The one-point compactification of \mathbb is homeomorphic to the circle ; the one-point compactification of \mathbb^2 is homeomorphic to the sphere . Using the one-point compactification, one can also easily construct compact spaces which are not Hausdorff, by starting with a non-Hausdorff space. * The
right order topology In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, th ...
or left order topology on any bounded totally ordered set is compact. In particular,
Sierpiński space In mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is name ...
is compact. * No discrete space with an infinite number of points is compact. The collection of all singletons of the space is an open cover which admits no finite subcover. Finite discrete spaces are compact. * In \mathbb carrying the
lower limit topology In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set \mathbb of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of inte ...
, no uncountable set is compact. * In the
cocountable topology The cocountable topology or countable complement topology on any set ''X'' consists of the empty set and all cocountable subsets of ''X'', that is all sets whose complement in ''X'' is countable. It follows that the only closed subsets are ''X'' and ...
on an uncountable set, no infinite set is compact. Like the previous example, the space as a whole is not locally compact but is still Lindelöf. * The closed unit interval is compact. This follows from the Heine–Borel theorem. The open interval is not compact: the open cover \left( \frac, 1 - \frac \right) for does not have a finite subcover. Similarly, the set of '' rational numbers'' in the closed interval is not compact: the sets of rational numbers in the intervals \left , \frac - \frac\righttext\left frac + \frac, 1\right/math> cover all the rationals in , 1for but this cover does not have a finite subcover. Here, the sets are open in the subspace topology even though they are not open as subsets of \mathbb. * The set \mathbb of all real numbers is not compact as there is a cover of open intervals that does not have a finite subcover. For example, intervals , where takes all integer values in , cover \mathbb but there is no finite subcover. * On the other hand, the extended real number line carrying the analogous topology ''is'' compact; note that the cover described above would never reach the points at infinity and thus would ''not'' cover the extended real line. In fact, the set has the homeomorphism to ��1, 1of mapping each infinity to its corresponding unit and every real number to its sign multiplied by the unique number in the positive part of interval that results in its absolute value when divided by one minus itself, and since homeomorphisms preserve covers, the Heine-Borel property can be inferred. * For every
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
, the -sphere is compact. Again from the Heine–Borel theorem, the closed unit ball of any finite-dimensional
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
is compact. This is not true for infinite dimensions; in fact, a normed vector space is finite-dimensional if and only if its closed unit ball is compact. * On the other hand, the closed unit ball of the dual of a normed space is compact for the weak-* topology. ( Alaoglu's theorem) * The Cantor set is compact. In fact, every compact metric space is a continuous image of the Cantor set. * Consider the set of all functions from the real number line to the closed unit interval, and define a topology on so that a sequence \ in converges towards if and only if \ converges towards for all real numbers . There is only one such topology; it is called the topology of pointwise convergence or the
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-s ...
. Then is a compact topological space; this follows from the Tychonoff theorem. * Consider the set of all functions satisfying the Lipschitz condition for all . Consider on the metric induced by the uniform distance d(f, g) = \sup_ , f(x) - g(x), . Then by
Arzelà–Ascoli theorem The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interv ...
the space is compact. * The
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of any
bounded linear operator In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vect ...
on a Banach space is a nonempty compact subset of the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s \mathbb. Conversely, any compact subset of \mathbb arises in this manner, as the spectrum of some bounded linear operator. For instance, a diagonal operator on the Hilbert space \ell^2 may have any compact nonempty subset of \mathbb as spectrum.


Algebraic examples

*
Compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
s such as an orthogonal group are compact, while groups such as a
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
are not. * Since the -adic integers are homeomorphic to the Cantor set, they form a compact set. * The
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of any commutative ring with the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
(that is, the set of all prime ideals) is compact, but never Hausdorff (except in trivial cases). In algebraic geometry, such topological spaces are examples of quasi-compact schemes, "quasi" referring to the non-Hausdorff nature of the topology. * The spectrum of a Boolean algebra is compact, a fact which is part of the Stone representation theorem.
Stone space In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in ...
s, compact totally disconnected Hausdorff spaces, form the abstract framework in which these spectra are studied. Such spaces are also useful in the study of profinite groups. * The structure space of a commutative unital
Banach algebra In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
is a compact Hausdorff space. * The Hilbert cube is compact, again a consequence of Tychonoff's theorem. * A profinite group (e.g.
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
) is compact.


See also

* Compactly generated space *
Compactness theorem In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally ...
* Eberlein compactum * Exhaustion by compact sets * Lindelöf space *
Metacompact space In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an op ...
*
Noetherian topological space In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, ...
* Orthocompact space *
Paracompact space In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal ...
* Precompact set - also called ''
totally bounded In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size� ...
'' * Relatively compact subspace *
Totally bounded In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size� ...


Notes


References


Bibliography

* *. *. * (''Purely analytic proof of the theorem that between any two values which give results of opposite sign, there lies at least one real root of the equation''). * * * * * * * * * * * * * * * . * *


External links

* * ---- {{DEFAULTSORT:Compact Space Compactness (mathematics) General topology Properties of topological spaces Topology