HOME

TheInfoList



OR:

Commutative algebra, first known as
ideal theory In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only consid ...
, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes
ring theory In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
,
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
, and the theory of
Banach algebra In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
s.


Overview

Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s are
Dedekind ring In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
s, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the notion of a valuation ring. The restriction of
algebraic field extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ext ...
s to subrings has led to the notions of integral extensions and
integrally closed domain In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' which is a root ...
s as well as the notion of ramification of an extension of valuation rings. The notion of localization of a ring (in particular the localization with respect to a prime ideal, the localization consisting in inverting a single element and the
total quotient ring In abstract algebra, the total quotient ring, or total ring of fractions, is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings ''R'' that may have zero divisors. The construction embeds ...
) is one of the main differences between commutative algebra and the theory of non-commutative rings. It leads to an important class of commutative rings, the local rings that have only one
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
. The set of the prime ideals of a commutative ring is naturally equipped with a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
. All these notions are widely used in algebraic geometry and are the basic technical tools for the definition of scheme theory, a generalization of algebraic geometry introduced by Grothendieck. Many other notions of commutative algebra are counterparts of geometrical notions occurring in algebraic geometry. This is the case of
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...
,
primary decomposition In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are relate ...
,
regular ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ide ...
s, Cohen–Macaulay rings,
Gorenstein ring In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is ...
s and many other notions.


History

The subject, first known as
ideal theory In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only consid ...
, began with Richard Dedekind's work on ideals, itself based on the earlier work of
Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned ...
and
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
. Later, David Hilbert introduced the term ''ring'' to generalize the earlier term ''number ring''. Hilbert introduced a more abstract approach to replace the more concrete and computationally oriented methods grounded in such things as complex analysis and classical
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. In turn, Hilbert strongly influenced
Emmy Noether Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
, who recast many earlier results in terms of an ascending chain condition, now known as the Noetherian condition. Another important milestone was the work of Hilbert's student
Emanuel Lasker Emanuel Lasker (; December 24, 1868 – January 11, 1941) was a German chess player, mathematician, and philosopher who was World Chess Champion for 27 years, from 1894 to 1921, the longest reign of any officially recognised World Chess Cham ...
, who introduced
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. Fo ...
s and proved the first version of the Lasker–Noether theorem. The main figure responsible for the birth of commutative algebra as a mature subject was
Wolfgang Krull Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject. Krull was born and went to school in Baden-Baden. H ...
, who introduced the fundamental notions of localization and completion of a ring, as well as that of
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ide ...
s. He established the concept of the
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...
of a ring, first for Noetherian rings before moving on to expand his theory to cover general valuation rings and Krull rings. To this day,
Krull's principal ideal theorem In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, ''Krull ...
is widely considered the single most important foundational theorem in commutative algebra. These results paved the way for the introduction of commutative algebra into algebraic geometry, an idea which would revolutionize the latter subject. Much of the modern development of commutative algebra emphasizes modules. Both ideals of a ring ''R'' and ''R''-algebras are special cases of ''R''-modules, so module theory encompasses both ideal theory and the theory of ring extensions. Though it was already incipient in Kronecker's work, the modern approach to commutative algebra using module theory is usually credited to Krull and Noether.


Main tools and results


Noetherian rings

In mathematics, more specifically in the area of modern algebra known as
ring theory In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
, a Noetherian ring, named after
Emmy Noether Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
, is a ring in which every non-empty set of ideals has a maximal element. Equivalently, a ring is Noetherian if it satisfies the ascending chain condition on ideals; that is, given any chain: :I_1\subseteq\cdots I_\subseteq I_\subseteq I_\subseteq\cdots there exists an ''n'' such that: :I_=I_=\cdots For a commutative ring to be Noetherian it suffices that every prime ideal of the ring is finitely generated. (The result is due to I. S. Cohen.) The notion of a Noetherian ring is of fundamental importance in both commutative and noncommutative ring theory, due to the role it plays in simplifying the ideal structure of a ring. For instance, the ring of integers and the polynomial ring over a field are both Noetherian rings, and consequently, such theorems as the Lasker–Noether theorem, the
Krull intersection theorem In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic nu ...
, and the Hilbert's basis theorem hold for them. Furthermore, if a ring is Noetherian, then it satisfies the
descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These con ...
on '' prime ideals''. This property suggests a deep theory of dimension for Noetherian rings beginning with the notion of the
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...
.


Hilbert's basis theorem

Hilbert's basis theorem has some immediate corollaries: #By induction we see that R _0, \dotsc, X_/math> will also be Noetherian. #Since any
affine variety In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal. ...
over R^n (i.e. a locus-set of a collection of polynomials) may be written as the locus of an ideal \mathfrak a\subset R _0, \dotsc, X_/math> and further as the locus of its generators, it follows that every affine variety is the locus of finitely many polynomials — i.e. the intersection of finitely many
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
s. #If A is a finitely-generated R-algebra, then we know that A \simeq R _0, \dotsc, X_/ \mathfrak a, where \mathfrak a is an ideal. The basis theorem implies that \mathfrak a must be finitely generated, say \mathfrak a = (p_0, \dotsc, p_), i.e. A is finitely presented.


Primary decomposition

An ideal ''Q'' of a ring is said to be '' primary'' if ''Q'' is
proper Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
and whenever ''xy'' ∈ ''Q'', either ''x'' ∈ ''Q'' or ''yn'' ∈ ''Q'' for some positive integer ''n''. In Z, the primary ideals are precisely the ideals of the form (''pe'') where ''p'' is prime and ''e'' is a positive integer. Thus, a primary decomposition of (''n'') corresponds to representing (''n'') as the intersection of finitely many primary ideals. The '' Lasker–Noether theorem'', given here, may be seen as a certain generalization of the fundamental theorem of arithmetic: For any primary decomposition of ''I'', the set of all radicals, that is, the set remains the same by the Lasker–Noether theorem. In fact, it turns out that (for a Noetherian ring) the set is precisely the assassinator of the module ''R''/''I''; that is, the set of all annihilators of ''R''/''I'' (viewed as a module over ''R'') that are prime.


Localization

The localization is a formal way to introduce the "denominators" to a given ring or a module. That is, it introduces a new ring/module out of an existing one so that it consists of
fractions A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
:\frac. where the
denominator A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
s ''s'' range in a given subset ''S'' of ''R''. The archetypal example is the construction of the ring Q of rational numbers from the ring Z of integers.


Completion

A completion is any of several related
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
s on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have simpler structure than the general ones and
Hensel's lemma In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to ...
applies to them.


Zariski topology on prime ideals

The
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
defines a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
on the spectrum of a ring (the set of prime ideals). In this formulation, the Zariski-closed sets are taken to be the sets :V(I) = \ where ''A'' is a fixed commutative ring and ''I'' is an ideal. This is defined in analogy with the classical Zariski topology, where closed sets in affine space are those defined by polynomial equations . To see the connection with the classical picture, note that for any set ''S'' of polynomials (over an algebraically closed field), it follows from
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ...
that the points of ''V''(''S'') (in the old sense) are exactly the tuples (''a1'', ..., ''an'') such that (''x1'' - ''a1'', ..., ''xn'' - ''an'') contains ''S''; moreover, these are maximal ideals and by the "weak" Nullstellensatz, an ideal of any affine coordinate ring is maximal if and only if it is of this form. Thus, ''V''(''S'') is "the same as" the maximal ideals containing ''S''. Grothendieck's innovation in defining Spec was to replace maximal ideals with all prime ideals; in this formulation it is natural to simply generalize this observation to the definition of a closed set in the spectrum of a ring.


Examples

The fundamental example in commutative algebra is the ring of integers \mathbb. The existence of primes and the unique factorization theorem laid the foundations for concepts such as
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
s and the
primary decomposition In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are relate ...
. Other important examples are: * Polynomial rings R _1,...,x_n/math> *The p-adic integers *Rings of
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s.


Connections with algebraic geometry

Commutative algebra (in the form of polynomial rings and their quotients, used in the definition of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
) has always been a part of algebraic geometry. However, in the late 1950s, algebraic varieties were subsumed into Alexander Grothendieck's concept of a scheme. Their local objects are affine schemes or prime spectra, which are locally ringed spaces, which form a category that is antiequivalent (dual) to the category of commutative unital rings, extending the duality between the category of affine algebraic varieties over a field ''k'', and the category of finitely generated reduced ''k''-algebras. The gluing is along the Zariski topology; one can glue within the category of locally ringed spaces, but also, using the Yoneda embedding, within the more abstract category of presheaves of sets over the category of affine schemes. The Zariski topology in the set-theoretic sense is then replaced by a Zariski topology in the sense of
Grothendieck topology In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is cal ...
. Grothendieck introduced Grothendieck topologies having in mind more exotic but geometrically finer and more sensitive examples than the crude Zariski topology, namely the étale topology, and the two flat Grothendieck topologies: fppf and fpqc. Nowadays some other examples have become prominent, including the Nisnevich topology. Sheaves can be furthermore generalized to stacks in the sense of Grothendieck, usually with some additional representability conditions, leading to Artin stacks and, even finer,
Deligne–Mumford stack In algebraic geometry, a Deligne–Mumford stack is a stack ''F'' such that Pierre Deligne and David Mumford introduced this notion in 1969 when they proved that moduli spaces of stable curves of fixed arithmetic genus are proper smooth Deligne ...
s, both often called algebraic stacks.


See also

*
List of commutative algebra topics Commutative algebra is the branch of abstract algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative r ...
* Glossary of commutative algebra * Combinatorial commutative algebra *
Gröbner basis In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring over a field . A Gröbn ...
* Homological algebra


Notes


References

*
Michael Atiyah Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded th ...
& Ian G. Macdonald, ''
Introduction to Commutative Algebra ''Introduction to Commutative Algebra'' is a well-known commutative algebra textbook written by Michael Atiyah and Ian G. Macdonald. It deals with elementary concepts of commutative algebra including localization, primary decomposition, integral ...
'', Massachusetts : Addison-Wesley Publishing, 1969. * Bourbaki, Nicolas, ''Commutative algebra. Chapters 1--7''. Translated from the French. Reprint of the 1989 English translation. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. xxiv+625 pp. * Bourbaki, Nicolas, ''Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9''. (Elements of mathematics. Commutative algebra. Chapters 8 and 9) Reprint of the 1983 original. Springer, Berlin, 2006. ii+200 pp. * * Rémi Goblot, "Algèbre commutative, cours et exercices corrigés", 2e édition, Dunod 2001, * Ernst Kunz, "Introduction to Commutative algebra and algebraic geometry", Birkhauser 1985, * Matsumura, Hideyuki, ''Commutative algebra''. Second edition. Mathematics Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. xv+313 pp. * Matsumura, Hideyuki, ''Commutative Ring Theory''. Second edition. Translated from the Japanese. Cambridge Studies in Advanced Mathematics, Cambridge, UK : Cambridge University Press, 1989. * Nagata, Masayoshi, ''Local rings''. Interscience Tracts in Pure and Applied Mathematics, No. 13. Interscience Publishers a division of John Wiley and Sons, New York-London 1962 xiii+234 pp. * Miles Reid, '' Undergraduate Commutative Algebra (London Mathematical Society Student Texts)'', Cambridge, UK : Cambridge University Press, 1996. *
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ina ...
, ''Local algebra''. Translated from the French by CheeWhye Chin and revised by the author. (Original title: ''Algèbre locale, multiplicités'') Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000. xiv+128 pp. * Sharp, R. Y., ''Steps in commutative algebra''. Second edition. London Mathematical Society Student Texts, 51. Cambridge University Press, Cambridge, 2000. xii+355 pp. * Zariski, Oscar; Samuel, Pierre, ''Commutative algebra''. Vol. 1, 2. With the cooperation of I. S. Cohen. Corrected reprinting of the 1958, 1960 edition. Graduate Texts in Mathematics, No. 28, 29. Springer-Verlag, New York-Heidelberg-Berlin, 1975. {{Authority control