HOME

TheInfoList



OR:

Color (
American English American English, sometimes called United States English or U.S. English, is the set of varieties of the English language native to the United States. English is the most widely spoken language in the United States and in most circumstances i ...
) or colour (
British English British English (BrE, en-GB, or BE) is, according to Lexico, Oxford Dictionaries, "English language, English as used in Great Britain, as distinct from that used elsewhere". More narrowly, it can refer specifically to the English language in ...
) is the visual perceptual
property Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, r ...
deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associated with objects or materials based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space, colors can be identified numerically by their coordinates. Because perception of color stems from the varying spectral sensitivity of different types of cone cells in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or physiological quantifications of color, however, do not fully explain the psychophysical perception of color appearance. Color science includes the perception of color by the eye and brain, the origin of color in materials, color theory in
art Art is a diverse range of human activity, and resulting product, that involves creative or imaginative talent expressive of technical proficiency, beauty, emotional power, or conceptual ideas. There is no generally agreed definition of wha ...
, and the
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
of electromagnetic radiation in the visible range (i.e. '' light'').


Physics of color

Electromagnetic radiation is characterized by its
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
(or
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
) and its intensity. When the wavelength is within the visible spectrum (the range of wavelengths humans can perceive, approximately from 390  nm to 700 nm), it is known as "visible light". Most light sources emit light at many different wavelengths; a source's ''spectrum'' is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color sensation in that direction, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class, the members are called '' metamers'' of the color in question. This effect can be visualized by comparing the light sources' spectral power distributions and the resulting colors.


Spectral colors

The familiar colors of the
rainbow A rainbow is a meteorological phenomenon that is caused by reflection, refraction and dispersion of light in water droplets resulting in a spectrum of light appearing in the sky. It takes the form of a multicoloured circular arc. Rainbows c ...
in the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
—named using the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
word for ''appearance'' or ''apparition'' by Isaac Newton in 1671—include all those colors that can be produced by visible light of a single wavelength only, the ''pure spectral'' or ''monochromatic'' colors. The table at right shows approximate frequencies (in terahertz) and wavelengths (in nanometers) for spectral colors in the visible range. Spectral colors have 100%
purity Purity may refer to: Books * ''Pureza'' (novel), a 1937 Brazilian novel by José Lins do Rego * ''Purity'' (novel), a 2015 novel by Jonathan Franzen ** ''Purity'' (TV series), a TV series based on the novel *''Purity'', a 2012 novel by Jackson P ...
, and are fully saturated. A complex mixture of spectral colors can be used to describe any color, which is the definition of a light
power spectrum The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, ...
. The color table should not be interpreted as a definitive list; the spectral colors form a continuous spectrum, and how it is divided into distinct colors linguistically is a matter of culture and historical contingency. Despite the ubiquitous
ROYGBIV ROYGBIV is an acronym for the sequence of hues commonly described as making up a rainbow: red, orange, yellow, green, blue, indigo, and violet. There are several mnemonics that can be used for remembering this color sequence, such as the ...
mnemonic used to remember the spectral colors in english, the inclusion or exclusion of colors in this table is contentious, with disagreement often focused on indigo and cyan. Even if the subset of color terms is agreed, their wavelength ranges and borders between them may not be. The ''intensity'' of a spectral color, relative to the context in which it is viewed, may alter its perception considerably according to the
Bezold–Brücke shift The Bezold–Brücke shift or luminance-on-hue effect is a change in hue perception as light intensity changes. As intensity increases, spectral colors shift more towards blue (if below 500 nm) or yellow (if above 500 nm). At lower inten ...
; for example, a low-intensity orange-yellow is
brown Brown is a color. It can be considered a composite color, but it is mainly a darker shade of orange. In the CMYK color model used in printing or painting, brown is usually made by combining the colors orange and black. In the RGB color model us ...
, and a low-intensity yellow-green is olive green.


Color of objects

The color of an object as perceived by an observer is not an intrinsic quality of that object, but depends on several factors: # the physics of the object (which wavelengths of light are selectively absorbed, reflected, transmitted, or emitted) # the color of the light shining on the object ( color cast of the
illuminant A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting. CIE illuminants The Inter ...
) # the angles between observer, object and illuminant (applicable to
structural color Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination wit ...
) # the physics of light in its environment (how the atmosphere may affect the light through
Rayleigh scattering Rayleigh scattering ( ), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of th ...
or dispersion, for example) # relative velocity between object and observer ( red shift; mostly applicable to astronomy) # the characteristics of the perceiving eye (the number and spectral sensitivity of
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
classes and dimensionality of color vision) # higher order processes in the brain that affect the color, such as
color constancy Color constancy is an example of subjective constancy and a feature of the human color perception system which ensures that the perceived color of objects remains relatively constant under varying illumination conditions. A green apple ...
Some generalizations of the physics can be drawn, neglecting perceptual effects for now: *Light arriving at an opaque surface is either reflected " specularly" (that is, in the manner of a mirror), scattered (that is, reflected with diffuse scattering), or absorbed—or some combination of these. *Opaque objects that do not reflect specularly (which tend to have rough surfaces) have their color determined by which wavelengths of light they scatter strongly (with the light that is not scattered being absorbed). If objects scatter all wavelengths with roughly equal strength, they appear white. If they absorb all wavelengths, they appear black. *Opaque objects that specularly reflect the light of different wavelengths with different efficiencies look like mirrors tinted with colors determined by those differences. An object that reflects some fraction of impinging light and absorbs the rest may look black but also be faintly reflective; examples are black objects coated with layers of enamel or lacquer. *Objects that transmit light are either ''translucent'' (scattering the transmitted light) or ''transparent'' (not scattering the transmitted light). If they also absorb (or reflect) light of various wavelengths differentially, they appear tinted with a color determined by the nature of that absorption (or that reflectance). *Objects may emit light that they generate from having excited electrons, rather than merely reflecting or transmitting light. The electrons may be excited due to elevated temperature ('' incandescence''), as a result of chemical reactions ('' chemiluminescence''), after absorbing light of other frequencies (" fluorescence" or " phosphorescence") or from electrical contacts as in
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (co ...
s, or other
light source Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terah ...
s. To summarize, the color of an object is a complex result of its surface properties, its transmission properties, and its emission properties, all of which contribute to the mix of wavelengths in the light leaving the surface of the object. The perceived color is then further conditioned by the nature of the ambient illumination, and by the color properties of other objects nearby, and via other characteristics of the perceiving eye and brain.


Perception


Development of theories of color vision

Although
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
and other ancient scientists had already written on the nature of light and color vision, it was not until Newton that light was identified as the source of the color sensation. In 1810, Goethe published his comprehensive '' Theory of Colors'' in which he provided a rational description of colour experience, which 'tells us how it originates, not what it is'. (Schopenhauer) In 1801 Thomas Young proposed his
trichromatic theory Trichromacy or trichromatism is the possessing of three independent channels for conveying color information, derived from the three different types of cone cells in the eye. Organisms with trichromacy are called trichromats. The normal expl ...
, based on the observation that any color could be matched with a combination of three lights. This theory was later refined by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and li ...
and
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associatio ...
. As Helmholtz puts it, "the principles of Newton's law of mixture were experimentally confirmed by Maxwell in 1856. Young's theory of color sensations, like so much else that this marvelous investigator achieved in advance of his time, remained unnoticed until Maxwell directed attention to it." At the same time as Helmholtz,
Ewald Hering Karl Ewald Konstantin Hering (5 August 1834 – 26 January 1918) was a German physiologist who did much research into color vision, binocular perception and eye movements. He proposed opponent color theory in 1892. Born in Alt-Gersdorf, Ki ...
developed the opponent process theory of color, noting that
color blindness Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some aca ...
and afterimages typically come in opponent pairs (red-green, blue-orange, yellow-violet, and black-white). Ultimately these two theories were synthesized in 1957 by Hurvich and Jameson, who showed that retinal processing corresponds to the trichromatic theory, while processing at the level of the
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, ventral projec ...
corresponds to the opponent theory. In 1931, an international group of experts known as the ''Commission internationale de l'éclairage'' ( CIE) developed a mathematical color model, which mapped out the space of observable colors and assigned a set of three numbers to each.


Color in the eye

The ability of the human eye to distinguish colors is based upon the varying sensitivity of different cells in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
to light of different
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
s. Humans are
trichromatic Trichromacy or trichromatism is the possessing of three independent channels for conveying color information, derived from the three different types of cone cells in the eye. Organisms with trichromacy are called trichromats. The normal expl ...
—the retina contains three types of color receptor cells, or
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
s. One type, relatively distinct from the other two, is most responsive to light that is perceived as blue or blue-violet, with wavelengths around 450 nm; cones of this type are sometimes called ''short-wavelength cones'' or ''S cones'' (or misleadingly, ''blue cones''). The other two types are closely related genetically and chemically: ''middle-wavelength cones'', ''M cones'', or ''green cones'' are most sensitive to light perceived as green, with wavelengths around 540 nm, while the ''long-wavelength cones'', ''L cones'', or ''red cones'', are most sensitive to light that is perceived as greenish yellow, with wavelengths around 570 nm. Light, no matter how complex its composition of wavelengths, is reduced to three color components by the eye. Each cone type adheres to the principle of univariance, which is that each cone's output is determined by the amount of light that falls on it over all wavelengths. For each location in the visual field, the three types of cones yield three signals based on the extent to which each is stimulated. These amounts of stimulation are sometimes called ''tristimulus values''. The response curve as a function of wavelength varies for each type of cone. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate ''only'' the mid-wavelength (so-called "green") cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human ''color space''. It has been estimated that humans can distinguish roughly 10 million different colors. The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all. On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone. These effects, combined, are summarized also in the
Kruithof curve The Kruithof curve describes a region of illuminance levels and color temperatures that are often viewed as comfortable or pleasing to an observer. The curve was constructed from psychophysical data collected by Dutch physicist Arie Andries K ...
, which describes the change of color perception and pleasingness of light as a function of temperature and intensity.


Color in the brain

While the mechanisms of color vision at the level of the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
are well-described in terms of tristimulus values, color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three opponent processes, or opponent channels, each constructed from the raw output of the cones: a red–green channel, a blue–yellow channel, and a black–white "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why humans cannot perceive a "reddish green" or "yellowish blue", and it predicts the
color wheel A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc. Some sources use the terms ''color wheel'' ...
: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes. The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our ''perception'' of the world—a type of
qualia In philosophy of mind, qualia ( or ; singular form: quale) are defined as individual instances of subjective, conscious experience. The term ''qualia'' derives from the Latin neuter plural form (''qualia'') of the Latin adjective '' quālis'' () ...
—is a matter of complex and continuing philosophical dispute.


Nonstandard color perception


Color vision deficiency

A color vision deficiency causes an individual to perceive a smaller gamut of colors than the standard observer with normal color vision. The effect can be mild, having lower "color resolution" (i.e. anomalous trichromacy), moderate, lacking an entire dimension or channel of color (e.g. dichromacy), or complete, lacking all color perception (i.e.
monochromacy Monochromacy (from Greek ''mono'', meaning "one" and ''chromo'', meaning "color") is the ability of organisms or machines to perceive only light intensity, without respect to spectral composition (color). Organisms with monochromacy are called ...
). Most forms of color blindness derive from one or many of the three classes of cone cells either being missing, having a shifted spectral sensitivity or having lower responsiveness to incoming light. In addition, cerebral achromatopsia is caused by neural anomalies in those parts of the brain where visual processing takes place. Some colors that appear distinct to an individual with normal color vision will appear
metameric In biology, metamerism is the phenomenon of having a linear series of body segments fundamentally similar in structure, though not all such structures are entirely alike in any single life form because some of them perform special functions. In ...
to the color blind. The most common form of color blindness is congenital red-green color blindness, affecting ~8% of males. Individuals with the strongest form of this condition ( dichromacy) will experience blue and purple, green and yellow, teal and gray as colors of confusion, i.e. metamers.


Tetrachromacy

Outside of humans, which are mostly ''trichromatic'' (having three types of cones), most mammals are dichromatic, possessing only two cones. However, outside of mammals, most vertebrate are '' tetrachromatic'', having four types of cones, and includes most, birds, reptiles, amphibians and bony fish. An extra dimension of color vision means these vertebrates can see two distinct colors that a normal human would view as metamers. Some invertebrates, such as the mantis shrimp, have an even higher number of cones (12) that could lead to a richer color gamut than even imaginable by humans. The existence of human tetrachromats is a contentious notion. As many as half of all human females have 4 distinct cone classes, which could enable tetrachromacy. However, a distinction must be made between ''retinal (or weak) tetrachromats'', which express four cone classes in the retina, and ''functional (or strong) tetrachromats'', which are able to make the enhanced color discriminations expected of tetrachromats. In fact, there is only one peer-reviewed report of a functional tetrachromat. It is estimated that while the average person is able to see one million colors, someone with functional tetrachromacy could see a hundred million colors.


Synesthesia

In certain forms of synesthesia, perceiving letters and numbers ( grapheme–color synesthesia) or hearing sounds ( chromesthesia) will evoke a perception of color. Behavioral and
functional neuroimaging Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used a ...
experiments have demonstrated that these color experiences lead to changes in behavioral tasks and lead to increased activation of brain regions involved in color perception, thus demonstrating their reality, and similarity to real color percepts, albeit evoked through a non-standard route. Synesthesia can occur genetically, with 4% of the population having variants associated with the condition. Synesthesia has also been known to occur with brain damage, drugs, and sensory deprivation. The philosopher Pythagoras experienced synesthesia and provided one of the first written accounts of the condition in approximately 550 BCE. He created mathematical equations for musical notes that could form part of a scale, such as an octave.


Afterimages

After exposure to strong light in their sensitivity range, photoreceptors of a given type become desensitized. For a few seconds after the light ceases, they will continue to signal less strongly than they otherwise would. Colors observed during that period will appear to lack the color component detected by the desensitized photoreceptors. This effect is responsible for the phenomenon of
afterimage AfterImage is a Filipino rock band formed in 1986, best known for their songs "Habang May Buhay", "Next in Line", and "Mangarap Ka". They disbanded in 1997 and became active again in 2008 after they reunited and released their fourth studio alb ...
s, in which the eye may continue to see a bright figure after looking away from it, but in a complementary color. Afterimage effects have also been used by artists, including Vincent van Gogh.


Color constancy

When an artist uses a limited color palette, the human eye tends to compensate by seeing any gray or neutral color as the color which is missing from the color wheel. For example, in a limited palette consisting of red, yellow, black, and white, a mixture of yellow and black will appear as a variety of green, a mixture of red and black will appear as a variety of purple, and pure gray will appear bluish. The trichromatic theory is strictly true when the visual system is in a fixed state of adaptation. In reality, the visual system is constantly adapting to changes in the environment and compares the various colors in a scene to reduce the effects of the illumination. If a scene is illuminated with one light, and then with another, as long as the difference between the light sources stays within a reasonable range, the colors in the scene appear relatively constant to us. This was studied by Edwin H. Land in the 1970s and led to his retinex theory of
color constancy Color constancy is an example of subjective constancy and a feature of the human color perception system which ensures that the perceived color of objects remains relatively constant under varying illumination conditions. A green apple ...
. Both phenomena are readily explained and mathematically modeled with modern theories of chromatic adaptation and color appearance (e.g.
CIECAM02 In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 (''Color Appearance Modelling for Color Management Systems'') and the successor of CIECAM97s ...
, iCAM).M.D. Fairchild
Color Appearance Models
, 2nd Ed., Wiley, Chichester (2005).
There is no need to dismiss the trichromatic theory of vision, but rather it can be enhanced with an understanding of how the visual system adapts to changes in the viewing environment.


Color naming

Colors vary in several different ways, including
hue In color theory, hue is one of the main properties (called color appearance parameters) of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that ...
(shades of
red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
,
orange Orange most often refers to: *Orange (fruit), the fruit of the tree species '' Citrus'' × ''sinensis'' ** Orange blossom, its fragrant flower *Orange (colour), from the color of an orange, occurs between red and yellow in the visible spectrum * ...
,
yellow Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In the ...
, green,
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
, and violet),
saturation Saturation, saturated, unsaturation or unsaturated may refer to: Chemistry * Saturation, a property of organic compounds referring to carbon-carbon bonds **Saturated and unsaturated compounds ** Degree of unsaturation **Saturated fat or fatty aci ...
,
brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminan ...
, and gloss. Some color words are derived from the name of an object of that color, such as "
orange Orange most often refers to: *Orange (fruit), the fruit of the tree species '' Citrus'' × ''sinensis'' ** Orange blossom, its fragrant flower *Orange (colour), from the color of an orange, occurs between red and yellow in the visible spectrum * ...
" or " salmon", while others are abstract, like "red". In the 1969 study '' Basic Color Terms: Their Universality and Evolution'', Brent Berlin and Paul Kay describe a pattern in naming "basic" colors (like "red" but not "red-orange" or "dark red" or "blood red", which are "shades" of red). All languages that have two "basic" color names distinguish dark/cool colors from bright/warm colors. The next colors to be distinguished are usually red and then yellow or green. All languages with six "basic" colors include black, white, red, green, blue, and yellow. The pattern holds up to a set of twelve: black, gray, white, pink, red, orange, yellow, green, blue, purple, brown, and azure (distinct from blue in
Russian Russian(s) refers to anything related to Russia, including: *Russians (, ''russkiye''), an ethnic group of the East Slavic peoples, primarily living in Russia and neighboring countries *Rossiyane (), Russian language term for all citizens and peo ...
and
Italian Italian(s) may refer to: * Anything of, from, or related to the people of Italy over the centuries ** Italians, an ethnic group or simply a citizen of the Italian Republic or Italian Kingdom ** Italian language, a Romance language *** Regional Ita ...
, but not English).


In culture

Colors, their meanings and associations can play a major role in works of art, including literature.


Associations

Individual colors have a variety of cultural associations such as national colors (in general described in individual color articles and color symbolism). The field of color psychology attempts to identify the effects of color on human emotion and activity.
Chromotherapy Chromotherapy, sometimes called color therapy, colorology or cromatherapy, is an alternative medicine method that is considered pseudoscience and quackery. Chromotherapists claim to be able to use light in the form of color to balance "energy" l ...
is a form of alternative medicine attributed to various Eastern traditions. Colors have different associations in different countries and cultures. Different colors have been demonstrated to have effects on cognition. For example, researchers at the University of Linz in Austria demonstrated that the color red significantly decreases cognitive functioning in men. The combination of the colors red and yellow together can induce hunger, which has been capitalized on by a number of chain restaurants. Color plays a role in memory development too. A photograph that is in black and white is slightly less memorable than one in color. Studies also show that wearing bright colors makes you more memorable to people you meet.


Color reproduction

Color reproduction Color reproduction is an aspect of color science concerned with producing light spectra that evoke a desired color, either through additive (light emitting) or subtractive (surface color) models. It converts physical correlates of color percept ...
is the science of creating colors for the human eye that faithfully represent the desired color. It focuses on how to construct a spectrum of wavelengths that will best evoke a certain color in an observer. Most colors are not spectral colors, meaning they are mixtures of various wavelengths of light. However, these non-spectral colors are often described by their
dominant wavelength In color science, the dominant wavelength is a method of characterizing a color's hue. Along with purity, it makes up one half of the Helmholtz coordinates. A color's dominant wavelength is the wavelength of monochromatic spectral light that evo ...
, which identifies the single wavelength of light that produces a sensation most similar to the non-spectral color. Dominant wavelength is roughly akin to
hue In color theory, hue is one of the main properties (called color appearance parameters) of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that ...
. There are many color perceptions that by definition cannot be pure spectral colors due to desaturation or because they are
purple Purple is any of a variety of colors with hue between red and blue. In the RGB color model used in computer and television screens, purples are produced by mixing red and blue light. In the RYB color model historically used by painters, ...
s (mixtures of red and violet light, from opposite ends of the spectrum). Some examples of necessarily non-spectral colors are the achromatic colors (black, gray, and white) and colors such as pink,
tan Tan or TAN may refer to: Businesses and organisations * Black and Tans, a nickname for British special constables during the Irish War of Independence. By extension "Tans" can now also colloquially refer to English or British people in general, es ...
, and
magenta Magenta () is a color that is variously defined as pinkish- purplish- red, reddish-purplish-pink or mauvish-crimson. On color wheels of the RGB (additive) and CMY (subtractive) color models, it is located exactly midway between red and blu ...
. Two different light spectra that have the same effect on the three color receptors in the human eye will be perceived as the same color. They are metamers of that color. This is exemplified by the white light emitted by fluorescent lamps, which typically has a spectrum of a few narrow bands, while daylight has a continuous spectrum. The human eye cannot tell the difference between such light spectra just by looking into the light source, although the
color rendering index A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source. Light sources with a high CRI are desirable in ...
of each light source may affect the color of objects illuminated by these metameric light sources. Similarly, most human color perceptions can be generated by a mixture of three colors called ''primaries''. This is used to reproduce color scenes in photography, printing, television, and other media. There are a number of methods or color spaces for specifying a color in terms of three particular primary colors. Each method has its advantages and disadvantages depending on the particular application. No mixture of colors, however, can produce a response truly identical to that of a spectral color, although one can get close, especially for the longer wavelengths, where the
CIE 1931 color space The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that defin ...
chromaticity diagram has a nearly straight edge. For example, mixing green light (530 nm) and blue light (460 nm) produces cyan light that is slightly desaturated, because response of the red color receptor would be greater to the green and blue light in the mixture than it would be to a pure cyan light at 485 nm that has the same intensity as the mixture of blue and green. Because of this, and because the ''primaries'' in color printing systems generally are not pure themselves, the colors reproduced are never perfectly saturated spectral colors, and so spectral colors cannot be matched exactly. However, natural scenes rarely contain fully saturated colors, thus such scenes can usually be approximated well by these systems. The range of colors that can be reproduced with a given color reproduction system is called the gamut. The CIE chromaticity diagram can be used to describe the gamut. Another problem with color reproduction systems is connected with the initial measurement of color, or
colorimetry Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color ...
. The characteristics of the color sensors in measurement devices (e.g. cameras, scanners) are often very far from the characteristics of the receptors in the human eye. A color reproduction system "tuned" to a human with normal color vision may give very inaccurate results for other observers, according to color vision deviations to the standard observer. The different color response of different devices can be problematic if not properly managed. For color information stored and transferred in digital form,
color management In digital imaging systems, color management (or colour management) is the controlled conversion between the color representations of various devices, such as image scanners, digital cameras, monitors, TV screens, film printers, computer printer ...
techniques, such as those based on
ICC profile In color management, an ICC profile is a set of data that characterizes a color input or output device, or a color space, according to standards promulgated by the International Color Consortium (ICC). Profiles describe the color attributes of a ...
s, can help to avoid distortions of the reproduced colors. Color management does not circumvent the gamut limitations of particular output devices, but can assist in finding good mapping of input colors into the gamut that can be reproduced.


Additive coloring

Additive color Additive color or additive mixing is a property of a color model that predicts the appearance of colors made by coincident component lights, i.e. the perceived color can be predicted by summing the numeric representations of the component colo ...
is light created by mixing together light of two or more different colors.
Red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
, green, and
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
are the additive
primary color A set of primary colors or primary colours (see spelling differences) consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a ...
s normally used in additive color systems such as projectors and computer terminals.


Subtractive coloring

Subtractive color Subtractive color or subtractive color mixing predicts the spectral power distribution of light after it passes through successive layers of partially absorbing media. This idealized model is the essential principle of how dyes and inks are use ...
ing uses dyes, inks, pigments, or filters to absorb some wavelengths of light and not others. The color that a surface displays comes from the parts of the visible spectrum that are not absorbed and therefore remain visible. Without pigments or dye, fabric fibers, paint base and paper are usually made of particles that scatter white light (all colors) well in all directions. When a pigment or ink is added, wavelengths are absorbed or "subtracted" from white light, so light of another color reaches the eye. If the light is not a pure white source (the case of nearly all forms of artificial lighting), the resulting spectrum will appear a slightly different color.
Red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
paint, viewed under
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
light, may appear
black Black is a color which results from the absence or complete absorption of visible light. It is an achromatic color, without hue, like white and grey. It is often used symbolically or figuratively to represent darkness. Black and white ...
. Red paint is red because it scatters only the red components of the spectrum. If red paint is illuminated by blue light, it will be absorbed by the red paint, creating the appearance of a black object.


Structural color

Structural colors are colors caused by interference effects rather than by pigments. Color effects are produced when a material is scored with fine parallel lines, formed of one or more parallel thin layers, or otherwise composed of microstructures on the scale of the color's
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
. If the microstructures are spaced randomly, light of shorter wavelengths will be scattered preferentially to produce Tyndall effect colors: the blue of the sky (Rayleigh scattering, caused by structures much smaller than the wavelength of light, in this case, air molecules), the luster of
opal Opal is a hydrated amorphous form of silica (SiO2·''n''H2O); its water content may range from 3 to 21% by weight, but is usually between 6 and 10%. Due to its amorphous property, it is classified as a mineraloid, unlike crystalline form ...
s, and the blue of human irises. If the microstructures are aligned in arrays, for example, the array of pits in a CD, they behave as a diffraction grating: the grating reflects different wavelengths in different directions due to interference phenomena, separating mixed "white" light into light of different wavelengths. If the structure is one or more thin layers then it will reflect some wavelengths and transmit others, depending on the layers' thickness. Structural color is studied in the field of thin-film optics. The most ordered or the most changeable structural colors are iridescent. Structural color is responsible for the blues and greens of the feathers of many birds (the blue jay, for example), as well as certain butterfly wings and beetle shells. Variations in the pattern's spacing often give rise to an iridescent effect, as seen in peacock feathers, soap bubbles, films of oil, and mother of pearl, because the reflected color depends upon the viewing angle. Numerous scientists have carried out research in butterfly wings and beetle shells, including Isaac Newton and Robert Hooke. Since 1942, electron micrography has been used, advancing the development of products that exploit structural color, such as "
photonic Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
" cosmetics.


Additional terms

*
Color wheel A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc. Some sources use the terms ''color wheel'' ...
: an illustrative organization of color hues in a circle that shows relationships. * Colorfulness, chroma, purity, or saturation: how "intense" or "concentrated" a color is. Technical definitions distinguish between colorfulness, chroma, and saturation as distinct perceptual attributes and include purity as a physical quantity. These terms, and others related to light and color, are internationally agreed upon and published in the CIE Lighting Vocabulary. More readily available texts on colorimetry also define and explain these terms.R.S. Berns
Principles of Color Technology
, 3rd Ed., Wiley, New York (2001).
* Dichromatism: a phenomenon where the hue is dependent on the concentration and thickness of the absorbing substance. *
Hue In color theory, hue is one of the main properties (called color appearance parameters) of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that ...
: the color's direction from white, for example in a
color wheel A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc. Some sources use the terms ''color wheel'' ...
or
chromaticity Chromaticity is an objective specification of the quality of a color regardless of its luminance. Chromaticity consists of two independent parameters, often specified as hue (h) and colorfulness (s), where the latter is alternatively called ...
diagram. * Shade: a color made darker by adding black. *
Tint In color theory, a tint is a mixture of a color with white, which increases lightness, while a shade is a mixture with black, which increases darkness. Both processes affect the resulting color mixture's relative saturation. A tone is produce ...
: a color made lighter by adding white. * Value, brightness, lightness, or luminosity: how light or dark a color is.


See also

* Chromophore * Color analysis (art) * Color in Chinese culture * Color mapping * Complementary color * Impossible color *
International Color Consortium The International Color Consortium (ICC) was formed in 1993 by eight vendors in order to create an open, vendor-neutral color management system which would function transparently across all operating systems and software packages. Overview The ...
*
International Commission on Illumination The International Commission on Illumination (usually abbreviated CIE for its French name, Commission internationale de l'éclairage) is the international authority on light, illumination, colour, and colour spaces. It was established in 1913 a ...
*
Lists of colors These are the lists of colors; * List of colors: A–F * List of colors: G–M * List of colors: N–Z * List of colors (compact) * List of colors by shade * List of color palettes * List of Crayola crayon colors * List of RAL colors * List of X ...
(compact version) * Neutral color * Pearlescent coating including Metal effect pigments * Pseudocolor * Primary, secondary and
tertiary color A tertiary color or intermediate color is a color made by mixing full saturation of one primary color with half saturation of another primary color and none of a third primary color, in a given color space such as RGB, CMYK (more modern) or RYB ...
s


References


External links


ColorLab
MATLAB toolbox for color science computation and accurate color reproduction (by Jesus Malo and Maria Jose Luque, Universitat de Valencia). It includes CIE standard tristimulus colorimetry and transformations to a number of non-linear color appearance models (CIE Lab, CIE CAM, etc.).

Buenos Aires University The University of Buenos Aires ( es, Universidad de Buenos Aires, UBA) is a public research university in Buenos Aires, Argentina. Established in 1821, it is the premier institution of higher learning in the country and one of the most prestigi ...
* * * Robert Ridgway'
''A Nomenclature of Colors'' (1886)
an
''Color Standards and Color Nomenclature'' (1912)
��text-searchable digital facsimiles at Linda Hall Library * Albert Henry Munsell'
''A Color Notation''
(1907) at Project Gutenberg
AIC
International Colour Association
The Effect of Color , OFF BOOK
Documentary produced by Off Book
Study of the history of colors
{{Authority control Image processing Qualia Vision