HOME

TheInfoList



OR:

A circumstellar disc (or circumstellar disk) is a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
, pancake or ring-shaped
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other fo ...
of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic parti ...
composed of
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
,
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in homes ...
,
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s,
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s, or collision fragments in
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a ...
around a
star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth ma ...
. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
formation has taken place, and around
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes f ...
s, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.


Young star

According to the widely accepted model of
star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth ma ...
formation, sometimes referred to as the nebular hypothesis, a young star (
protostar A protostar is a very young star that is still gathering mass from its parent molecular cloud. The protostellar phase is the earliest one in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 50 ...
) is formed by the gravitational collapse of a pocket of matter within a
giant molecular cloud A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
. The infalling material possesses some amount of
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syste ...
, which results in the formation of a gaseous
protoplanetary disc A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, be ...
around the young, rotating star. The former is a rotating circumstellar disc of dense gas and dust that continues to feed the central star. It may contain a few percent of the mass of the central star, mainly in the form of gas which is itself mainly
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
. The main accretion phase lasts a few million years, with accretion rates typically between 10−7 and 10−9 solar masses per year (rates for typical systems presented in Hartmann et al.). The disc gradually cools in what is known as the
T Tauri star T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and ide ...
stage. Within this disc, the formation of small dust grains made of rocks and ices can occur, and these can coagulate into
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s. If the disc is sufficiently massive, the runaway accretions begin, resulting in the appearance of planetary embryos. The formation of planetary systems is thought to be a natural result of star formation. A sun-like star usually takes around 100 million years to form.


Around the Solar System

*
Asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
is a reservoir of small bodies in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
located between the orbit of Mars and Jupiter. It is a source of interplanetary dust. *
Edgeworth-Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
, beyond the orbit of Neptune *
Scattered disc The scattered disc (or scattered disk) is a distant circumstellar disc in the Solar System that is sparsely populated by icy small solar system bodies, which are a subset of the broader family of trans-Neptunian objects. The scattered-disc obj ...
, beyond the orbit of Neptune *
Hills cloud In astronomy, the Hills cloud (also called the inner Oort cloud and inner cloud) is a vast theoretical circumstellar disc, interior to the Oort cloud, whose outer border would be located at around 20,000 to 30,000 astronomical units (AU) fro ...
; only the inner
Oort cloud The Oort cloud (), sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from ...
has a toroid-like shape. The outer Oort cloud is more spherical in shape.


Binary system

The infall of gas onto a binary system allows the formation of circumstellar and circumbinary discs. The formation of such a disc will occur for any
binary system A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter ''(also see animated examples)''. More restrictive definitions require that thi ...
in which infalling gas contains some degree of angular momentum. A general progression of disc formation is observed with increasing levels of angular momentum: * Circumprimary disc is one which orbits the primary (i.e. more massive) star of the binary system. This type of disc will form through
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
if any angular momentum is present in the infalling gas. * Circumsecondary disc is one which orbits around the secondary (i.e. less massive) star of the binary star system. This type of disc will only form when a high enough level of angular momentum is present within the infalling gas. The amount of angular momentum required is dependent on the secondary-to-primary mass ratio. * Circumbinary disc is one which orbits about both the primary and secondary stars. Such a disc will form at a later time than the circumprimary and circumsecondary discs, with an inner radius much larger than the orbital radius of the
binary system A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter ''(also see animated examples)''. More restrictive definitions require that thi ...
. A circumbinary disc may form with an upper mass limit of approximately 0.005 solar masses, at which point the
binary system A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter ''(also see animated examples)''. More restrictive definitions require that thi ...
is generally unable to perturb the disc strongly enough for gas to be further accreted onto the circumprimary and circumsecondary discs. An example of a circumbinary disc may be seen around the star system
GG Tauri GG Tauri, often abbreviated as GG Tau, is a quintuple star system in the constellation Taurus. At a distance of about 450 light years (140 parsecs) away, it is located within the Taurus-Auriga Star Forming Region. The system comprises ...
. Once a circumstellar disc has formed, spiral density waves are created within the circumstellar material via a differential torque due to the binary's gravity. The majority of these discs form axissymmetric to the binary plane, but it is possible for processes such as the Bardeen-Petterson effect, a misaligned dipole magnetic field and
radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
to produce a significant warp or tilt to an initially flat disc. Strong evidence of tilted discs is seen in the systems Her X-1, SMC X-1, and SS 433 (among others), where a periodic line-of-sight blockage of
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30  ...
emissions is seen on the order of 50–200 days; much slower than the systems' binary orbit of ~1 day. The periodic blockage is believed to result from precession of a circumprimary or circumbinary disc, which normally occurs retrograde to the binary orbit as a result of the same differential torque which creates spiral density waves in an axissymmetric disc. Evidence of tilted circumbinary discs can be seen through warped geometry within circumstellar discs, precession of protostellar jets, and inclined orbits of circumplanetary objects (as seen in the eclipsing binary TY CrA). For discs orbiting a low secondary-to-primary mass ratio binary, a tilted circumbinary disc will undergo rigid precession with a period on the order of years. For discs around a binary with a mass ratio of one, differential torques will be strong enough to tear the interior of the disc apart into two or more separate, precessing discs. A study from 2020 using ALMA data showed that circumbinary disks around short period binaries are often aligned with the orbit of the binary. Binaries with a period longer than one month showed typically a misalignment of the disk with the binary orbit.


Dust

* Debris discs consist of planetesimals along with fine dust and small amounts of gas generated through their collisions and evaporation. The original gas and small dust particles have been dispersed or accumulated into planets. *
Zodiacal cloud The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System ...
or
interplanetary dust The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System. ...
is the material in the Solar System created by collisions of asteroids and evaporation of comet seen to observers on Earth as a band of scattered light along the ecliptic before sunrise or after sunset. *
Exozodiacal dust Exozodiacal dust is 1–100 micrometre-sized grains of amorphous carbon and silicate dust that fill the plane of extrasolar planetary systems. It is the exoplanetary analog of zodiacal dust, the 1–100 micrometre-sized dust grains observed in th ...
is dust around another star than the Sun in a location analogous to that of the Zodiacal Light in the Solar System.


Stages

Stages in circumstellar discs refer to the structure and the main composition of the disc at different times during its evolution. Stages include the phases when the disc is composed mainly of submicron-sized particles, the evolution of these particles into grains and larger objects, the agglomeration of larger objects into
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s, and the growth and orbital evolution of planetesimals into the planetary systems, like our
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
or many other stars. Major stages of evolution of circumstellar discs: *
Protoplanetary discs A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, bec ...
: In this stage large quantities of primordial material (e.g., gas and dust) are present and the discs are massive enough to have potential to be planet-forming. * Transition discs: At this stage, the disc shows significative reduction in the presence of gas and dust and presents properties between protoplanetary and debris discs. * Debris discs: In this stage the circumstellar disc is a tenuous dust disc, presenting small gas amounts or even no gas at all. It is characterized by having dust lifetimes smaller than the age of the disc, hence indicating that the disc is second generation rather than primordial.


Disc dissipation and evolution

Material dissipation is one of the processes responsible for circumstellar discs evolution. Together with information about the mass of the central star, observation of material dissipation at different stages of a circumstellar disc can be used to determine the timescales involved in its evolution. For example, observations of the dissipation process in transition discs (discs with large inner holes) estimate the average age of a circumstellar disc to be approximately 10 Myr. Dissipation process and its duration in each stage is not well understood. Several mechanisms, with different predictions for discs' observed properties, have been proposed to explain dispersion in circumstellar discs. Mechanisms like decreasing dust opacity due to grain growth,
photoevaporation Photoevaporation denotes the process where energetic radiation ionises gas and causes it to disperse away from the ionising source. This typically refers to an astrophysical context where ultraviolet radiation from hot stars acts on clouds of mater ...
of material by
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30  ...
or UV photons from the central star (
stellar wind A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric. ...
), or the dynamical influence of a giant planet forming within the disc are some of the processes that have been proposed to explain dissipation. Dissipation is a process that occurs continuously in circumstellar discs throughout the lifetime of the central star, and at the same time, for the same stage, is a process that is present in different parts of the disc. Dissipation can be divided in inner disc dissipation, mid-disc dissipation, and outer disc dissipation, depending on the part of the disc considered. ''Inner disc dissipation'' occurs at the inner part of the disc (< 0.05 – 0.1 AU). Since it is closest to the star, this region is also the hottest, thus material present there typically emits radiation in the near-infrared region of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from b ...
. Study of the radiation emitted by the very hot dust present in that part of the disc indicates that there is an empirical connection between
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
from a disc onto the star and ejections in an outflow. ''Mid-disc dissipation'', occurs at the mid-disc region (1-5 AU) and is characterized for the presence of much more cooler material than in the inner part of the disc. Consequently, radiation emitted from this region has greater
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
, indeed in the mid-infrared region, which makes it very difficult to detect and to predict the timescale of this region's dissipation. Studies made to determine the dissipation timescale in this region provide a wide range of values, predicting timescales from less than 10 up to 100 Myr. ''Outer disc dissipation'' occurs in regions between 50 – 100 AU, where temperatures are much lower and emitted radiation
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
increases to the millimeter region of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from b ...
. Mean dust masses for this region has been reported to be ~ 10−5 solar masses. Studies of older debris discs (107 - 109 yr) suggest dust masses as low as 10−8 solar masses, implying that diffusion in outer discs occurs on a very long timescale. As mentioned, circumstellar discs are not equilibrium objects, but instead are constantly evolving. The evolution of the surface density \Sigma of the disc, which is the amount of mass per unit area so after the volume density at a particular location in the disc has been integrated over the vertical structure, is given by: \frac = \frac \frac \left r^ \frac \nu \Sigma r^ \right where r is the radial location in the disc and \nu is the viscosity at location r. This equation assumes axisymmetric symmetry in the disc, but is compatible with any vertical disc structure. Viscosity in the disc, whether molecular, turbulent or other, transports angular momentum outwards in the disc and most of the mass inwards, eventually accreting onto the central object. The mass accretion onto the star \dot in terms of the disc viscosity \nu is expressed: \dot = 3 \pi \nu \Sigma \left 1 - \sqrt \right where r_\text is the inner radius.


See also

*
Accretion disc An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other fo ...
*
Circumstellar envelope A circumstellar envelope (CSE) is a part of a star that has a roughly spherical shape and is not gravitationally bound to the star core. Usually circumstellar envelopes are formed from the dense stellar wind, or they are present before the formati ...
*
Disrupted planet In astronomy, a disrupted planet is a planet or exoplanet or, perhaps on a somewhat smaller scale, a planetary-mass object, planetesimal, moon, exomoon or asteroid that has been disrupted or destroyed by a nearby or passing astronomical body or o ...
*
Extrasolar planet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
*
Formation and evolution of the Solar System The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...
*
Peter Pan disk A Peter Pan disk is a circumstellar disk around a star or brown dwarf that appears to have retained enough gas to form a gas giant planet for much longer than the typically assumed gas dispersal timescale of approximately 5 million years. Several ...
* KIC 8462852 − Tabby's Star − oddly dimming star *
WD 1145+017 WD 1145+017 (also known as EPIC 201563164) is a white dwarf approximately from Earth in the constellation of Virgo. It is the first white dwarf to be observed with a transiting planetary-mass object orbiting it. Stellar characteristics ...
- star destroying
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
, producing a dusty disk


References


External links

*
Image Gallery of Dust disks
(from Paul Kalas,
Circumstellar Disk Learning Site
" {{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System Nebulae Articles containing video clips