HOME

TheInfoList



OR:

Chemostratigraphy, or chemical stratigraphy, is the study of the chemical variations within
sedimentary Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
sequences to determine stratigraphic relationships. The field is relatively young, having only come into common usage in the early 1980s, but the basic idea of chemostratigraphy is nearly as old as stratigraphy itself: distinct chemical signatures can be as useful as distinct
fossil A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
assemblages or distinct lithographies in establishing stratigraphic relationships between different rock layers.


Types of chemical variations

In some stratigraphic sequences, there is clearly a variation in color between different strata. Such color differences often originate from variations in the incorporation of
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
-containing materials during deposition and
lithification Lithification (from the Ancient Greek word ''lithos'' meaning 'rock' and the Latin-derived suffix ''-ific'') is the process in which sediments compact under pressure, expel connate fluids, and gradually become solid rock. Essentially, lithificatio ...
. Other differences in color can originate from variations in the organic carbon content of the rock. However, until relatively recently, these variations were not commonly investigated because of the great effort and expense involved in chemical analysis. Recently, the development of new analytical techniques for chemical analysis for igneous petrological applications during the latter half of the 20th century, e.g., the electron microprobe, and the development of normal focus
X-ray fluorescence X-ray fluorescence (XRF) is the emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis ...
for wellsite oil exploration has improved the availability of bulk chemical analysis techniques to the sedimentary geologist, making analysis of the chemical composition of strata increasingly possible. Concurrently, advances in atomic physics stimulated investigations in stable isotope
geochemistry Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing th ...
. Most relevant to chemostratigraphy in general was the discovery by Harold Urey and Cesare Emiliani in the early 1950s that the oxygen isotope variability in the calcite shells of
foraminifera Foraminifera (; Latin for "hole bearers"; informally called "forams") are single-celled organisms, members of a phylum or class of amoeboid protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly ...
could be used as a
proxy Proxy may refer to: * Proxy or agent (law), a substitute authorized to act for another entity or a document which authorizes the agent so to act * Proxy (climate), a measured variable used to infer the value of a variable of interest in climate re ...
for past ocean temperatures. Thus, chemostratigraphy generally provides two useful types of information to the larger geological community. First, chemostratigraphy can be used to investigate environmental change on the local, regional, and global levels by relating variations in rock chemistry to changes in the environment in which the sediment was deposited. An extreme example of this type of investigation might be the discovery of strata rich in
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density o ...
near the boundary between the
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of ...
and
Tertiary Tertiary ( ) is a widely used but obsolete term for the geologic period from 66 million to 2.6 million years ago. The period began with the demise of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start ...
systems globally. The high concentration of iridium, which is generally rare in the Earth's crust, is indicative of a large delivery of extraterrestrial material, presumably from a large
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
impactor during this time. A more prosaic example of chemostratigraphic reconstruction of past conditions might be the use of the
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mas ...
/
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon- ...
ratio over geologic time as a proxy for changes in
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major compon ...
processes at different stages of biological evolution. Second, regionally or globally correlatable chemostratigraphic signals can be found in rocks whose formation time is well-constrained by radionuclide dating of the strata themselves or by strata easily correlated with them, such as a volcanic suite that interrupts nearby strata. However, many sedimentary rocks are much harder to date, because they lack minerals with high concentrations of radionuclides and cannot be correlated with nearly datable sequences. Yet many of these rocks do possess chemostratigraphic signals. Therefore, the correlation between chemostatigraphic signals in conventionally datable and non-datable sequences has extended greatly our understanding of the history of tectonically quiescent regions and of biological organisms that lived in such regions. Chemostratigraphy also has acted as a check on other sub-fields of stratigraphy such as
biostratigraphy Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them.Hine, Robert. “Biostratigraphy.” ''Oxford Reference: Dictionary of ...
and magnetostratigraphy.


References

* * * * * {{refend


External links


Welcome to Chemostrat and to the World of Chemostratigraphy
Chemostrat Stratigraphy Paleoclimatology