HOME

TheInfoList



OR:

The Chandler wobble or Chandler variation of latitude is a small deviation in the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's axis of rotation relative to the solid earth, which was discovered by and named after American
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either ...
Seth Carlo Chandler in 1891. It amounts to change of about in the point at which the axis intersects the Earth's surface and has a period of 433 days. This wobble, which is an
astronomical nutation Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Al ...
, combines with another wobble with a period of one year, so that the total
polar motion Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Earth-fixed'' or ECEF reference ...
varies with a period of about 7 years. The Chandler wobble is an example of the kind of motion that can occur for a freely rotating object that is not a sphere; this is called a free
nutation Nutation () is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame ...
. Somewhat confusingly, the direction of the
Earth's rotation axis In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbit ...
relative to the stars also varies with different periods, and these motions—caused by the
tidal force The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomen ...
s of the Moon and Sun—are also called nutations, except for the slowest, which are precessions of the equinoxes.


Predictions

The existence of Earth's free nutation was predicted by
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
in Corollaries 20 to 22 of Proposition 66, Book 1 of the '' Philosophiæ Naturalis Principia Mathematica'', and by
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
in 1765 as part of his studies of the dynamics of rotating bodies. Based on the known
ellipticity Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is ...
of the Earth, Euler predicted that it would have a period of 305 days. Several astronomers searched for motions with this period, but none was found. Chandler's contribution was to look for motions at any possible period; once the Chandler wobble was observed, the difference between its period and the one predicted by Euler was explained by
Simon Newcomb Simon Newcomb (March 12, 1835 – July 11, 1909) was a Canadian–American astronomer, applied mathematician, and autodidactic polymath. He served as Professor of Mathematics in the United States Navy and at Johns Hopkins University. Born in N ...
as being caused by the non-rigidity of the Earth. The full explanation for the period also involves the fluid nature of the Earth's core and oceans—the wobble, in fact, produces a very small ocean
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
with an amplitude of approximately , called a ''
pole tide Long-period tides are gravitational tides with periods longer than one day, typically with amplitudes of a few centimeters or less. Long-period tidal constituents with relatively strong forcing include the ''lunar fortnightly'' (Mf) and ''lunar m ...
'', which is the only tide not caused by an extraterrestrial body. Despite the small amplitude, the gravitational effect of the pole tide is easily detected by the superconducting gravimeter.See, e.g., Fig. 2.3.


Measurement

The International Latitude Observatories were established in 1899 to measure the wobble as observed in latitude determinations. These provided data on the Chandler and annual wobble for most of the 20th century, though they were eventually superseded by other methods of measurement. Monitoring of the
polar motion Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Earth-fixed'' or ECEF reference ...
is now done by the
International Earth Rotation Service The International Earth Rotation and Reference Systems Service (IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation Pa ...
(IERS). The wobble's amplitude has varied since its discovery, reaching its largest size in 1910 and fluctuating noticeably from one decade to another. In 2009, Malkin & Miller's analysis of IERS Pole coordinates time series data from January 1946 to January 2009 showed three phase reversals of the wobble, in 1850, 1920, and 2005.


Hypotheses

Since the Earth is not a rigid body, the Chandler wobble should die down with a time constant of about 68 years, a very short period compared to geological timescales. The processes that continually re-excite the wobble are of interest to geophysicists. While it must be due to changes in the mass distribution or
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
of the Earth's
outer core Earth's outer core is a fluid layer about thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. The outer core begins approximately beneath Earth's surface at the core-mantle boundary and e ...
, atmosphere,
oceans The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the worl ...
, or crust (from
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s), for a long time the actual source was unclear, since no available motions seemed to be coherent with what was driving the wobble. An investigation was done in 2001 by Richard Gross at the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, United States. Founded in the 1930s by Caltech researchers, JPL is owned by NASA an ...
managed by the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
. He used angular momentum models of the atmosphere and the oceans in computer simulations to show that from 1985 to 1996, the Chandler wobble was excited by a combination of atmospheric and oceanic processes, with the dominant excitation mechanism being ocean‐bottom pressure fluctuations. Gross found that two-thirds of the "wobble" was caused by fluctuating pressure on the
seabed The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as 'seabeds'. The structure of the seabed of the global ocean is governed by plate tectonics. Most of ...
, which, in turn, is caused by changes in the circulation of the oceans caused by variations in
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, salinity, and
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ho ...
. The remaining third is due to
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
fluctuations.


Chandler wobble of Mars

Using radio tracking observations of the
Mars Odyssey ''2001 Mars Odyssey'' is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectro ...
,
Mars Reconnaissance Orbiter ''Mars Reconnaissance Orbiter'' (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005, an ...
and the
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
spacecraft, the Chandler wobble of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
has been detected. It is the first time it has been detected on a planetary body other than the Earth. The amplitude is 10 cm, the period is 206.9 ± 0.5 days and it is in a nearly circular counterclockwise direction as viewed from the North Pole.


See also

*
Milankovitch cycles Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
*
United States Naval Observatory United States Naval Observatory (USNO) is a scientific and military facility that produces geopositioning, navigation and timekeeping data for the United States Navy and the United States Department of Defense. Established in 1830 as the Depo ...


References


Further reading

* Carter, B. and M. S. Carter, 2003, "Latitude, How American Astronomers Solved the Mystery of Variation," Naval Institute Press, Annapolis. * * Lambeck, Kurt, 1980, ''The Earth's Variable Rotation: Geophysical Causes and Consequences'' (Cambridge Monographs on Mechanics), Cambridge University Press, London. * Munk, W. H. and MacDonald, G. J. F., 1960, ''The Rotation of the Earth'', Cambridge University Press, London. * Moritz, H. and I.I. Mueller, 1987, ''Earth Rotation: Theory and Observation'', Continuum International Publishing Group, London.


External links


Mystery of wobbly Earth solved
July 19, 2000

{{Geophysics navbox Geodesy