HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, given a ring ''R'', the category of left modules over ''R'' is the category whose
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
are all left
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action.


Properties

The categories of left and right modules are
abelian categories In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abe ...
. These categories have enough projectives and
enough injectives In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories ...
.
Mitchell's embedding theorem Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categor ...
states every abelian category arises as a
full subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of the category of modules.
Projective limit In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits ca ...
s and inductive limits exist in the categories of left and right modules. Over a commutative ring, together with the
tensor product of modules In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor produc ...
⊗, the category of modules is a
symmetric monoidal category In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict s ...
.


Category of vector spaces

The category ''K''-Vect (some authors use Vect''K'') has all
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s over a field ''K'' as objects, and ''K''-linear maps as morphisms. Since vector spaces over ''K'' (as a field) are the same thing as
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
s over the ring ''K'', ''K''-Vect is a special case of ''R''-Mod, the category of left ''R''-modules. Much of
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
concerns the description of ''K''-Vect. For example, the dimension theorem for vector spaces says that the isomorphism classes in ''K''-Vect correspond exactly to the
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. ...
s, and that ''K''-Vect is equivalent to the
subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of ''K''-Vect which has as its objects the vector spaces ''K''''n'', where ''n'' is any cardinal number.


Generalizations

The category of sheaves of modules over a
ringed space In mathematics, a ringed space is a family of ( commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf ...
also has enough injectives (though not always enough projectives).


See also

* Algebraic K-theory (the important invariant of the category of modules.) * Category of rings * Derived category * Module spectrum * Category of graded vector spaces * Category of abelian groups * Category of representations


References


Bibliography

* * *


External links

*http://ncatlab.org/nlab/show/Mod Vector spaces Linear algebra {{algebra-stub