HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a category (sometimes called an abstract category to distinguish it from a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
, whose objects are sets and whose arrows are functions. ''
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the notion of category provides a fundamental and abstract way to describe mathematical entities and their relationships. In addition to formalizing mathematics, category theory is also used to formalize many other systems in computer science, such as the
semantics of programming languages In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. Semantics describes the processe ...
. Two categories are the same if they have the same collection of objects, the same collection of arrows, and the same associative method of composing any pair of arrows. Two ''different'' categories may also be considered " equivalent" for purposes of category theory, even if they do not have precisely the same structure. Well-known categories are denoted by a short capitalized word or abbreviation in bold or italics: examples include
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
, the category of sets and set functions; Ring, the category of rings and
ring homomorphism In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preser ...
s; and Top, the category of
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s and
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in valu ...
s. All of the preceding categories have the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
as identity arrows and composition as the associative operation on arrows. The classic and still much used text on category theory is ''
Categories for the Working Mathematician ''Categories for the Working Mathematician'' (''CWM'') is a textbook in category theory written by American mathematician Saunders Mac Lane, who cofounded the subject together with Samuel Eilenberg. It was first published in 1971, and is based on ...
'' by
Saunders Mac Lane Saunders Mac Lane (4 August 1909 – 14 April 2005) was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftville ...
. Other references are given in the
References Reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to ''refer to'' the second object. It is called a ''name'' ...
below. The basic definitions in this article are contained within the first few chapters of any of these books. Any
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
can be understood as a special sort of category (with a single object whose self-morphisms are represented by the elements of the monoid), and so can any
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cas ...
.


Definition

There are many equivalent definitions of a category. One commonly used definition is as follows. A category ''C'' consists of * a
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
ob(''C'') of
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
s, * a class hom(''C'') of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s, or arrows, or maps between the objects, *a domain, or source object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , *a codomain, or target object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , * for every three objects ''a'', ''b'' and ''c'', a binary operation hom(''a'', ''b'') × hom(''b'', ''c'') → hom(''a'', ''c'') called ''composition of morphisms''; the composition of ''f'' : ''a'' → ''b'' and ''g'' : ''b'' → ''c'' is written as ''g'' ∘ ''f'' or ''gf''. (Some authors use "diagrammatic order", writing ''f;g'' or ''fg''). Note: Here hom(''a'', ''b'') denotes the subclass of morphisms ''f'' in hom(''C'') such that \mathrm(f) = a and \mathrm(f) = b. Such morphisms are often written as ''f'' : ''a'' → ''b''. such that the following axioms hold: * (
associativity In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
) if ''f'' : ''a'' → ''b'', ''g'' : ''b'' → ''c'' and ''h'' : ''c'' → ''d'' then ''h'' ∘ (''g'' ∘ ''f'') = (''h'' ∘ ''g'') ∘ ''f'', and * (
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
) for every object ''x'', there exists a morphism 1''x'' : ''x'' → ''x'' (some authors write ''id''''x'') called the ''identity morphism for x'', such that every morphism ''f'' : ''a'' → ''x'' satisfies 1''x'' ∘ ''f'' = ''f'', and every morphism ''g'' : ''x'' → ''b'' satisfies ''g'' ∘ 1''x'' = ''g''. We write ''f'': ''a'' → ''b'', and we say "''f'' is a morphism from ''a'' to ''b''". We write hom(''a'', ''b'') (or hom''C''(''a'', ''b'') when there may be confusion about to which category hom(''a'', ''b'') refers) to denote the hom-class of all morphisms from ''a'' to ''b''.Some authors write Mor(''a'', ''b'') or simply ''C''(''a'', ''b'') instead. From these axioms, one can prove that there is exactly one identity morphism for every object. Some authors use a slight variation of the definition in which each object is identified with the corresponding identity morphism.


Small and large categories

A category ''C'' is called small if both ob(''C'') and hom(''C'') are actually sets and not
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es, and large otherwise. A locally small category is a category such that for all objects ''a'' and ''b'', the hom-class hom(''a'', ''b'') is a set, called a homset. Many important categories in mathematics (such as the category of sets), although not small, are at least locally small. Since, in small categories, the objects form a set, a small category can be viewed as an
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set o ...
similar to a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
but without requiring closure properties. Large categories on the other hand can be used to create "structures" of algebraic structures.


Examples

The
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
of all sets (as objects) together with all functions between them (as morphisms), where the composition of morphisms is the usual
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
, forms a large category,
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
. It is the most basic and the most commonly used category in mathematics. The category Rel consists of all sets (as objects) with
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in ...
s between them (as morphisms). Abstracting from relations instead of functions yields allegories, a special class of categories. Any class can be viewed as a category whose only morphisms are the identity morphisms. Such categories are called discrete. For any given
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
''I'', the ''discrete category on I'' is the small category that has the elements of ''I'' as objects and only the identity morphisms as morphisms. Discrete categories are the simplest kind of category. Any preordered set (''P'', ≤) forms a small category, where the objects are the members of ''P'', the morphisms are arrows pointing from ''x'' to ''y'' when ''x'' ≤ ''y''. Furthermore, if ''≤'' is antisymmetric, there can be at most one morphism between any two objects. The existence of identity morphisms and the composability of the morphisms are guaranteed by the reflexivity and the transitivity of the preorder. By the same argument, any
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
and any
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
can be seen as a small category. Any
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
can be seen as a category when viewed as an ordered set. Any
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
(any
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set o ...
with a single
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
and an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
) forms a small category with a single object ''x''. (Here, ''x'' is any fixed set.) The morphisms from ''x'' to ''x'' are precisely the elements of the monoid, the identity morphism of ''x'' is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. Several definitions and theorems about monoids may be generalized for categories. Similarly any
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
can be seen as a category with a single object in which every morphism is ''invertible'', that is, for every morphism ''f'' there is a morphism ''g'' that is both left and right inverse to ''f'' under composition. A morphism that is invertible in this sense is called an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. A
groupoid In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *'' Group'' with a partial func ...
is a category in which every morphism is an isomorphism. Groupoids are generalizations of groups,
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
s and
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
s. Actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. Consider a topological space ''X'' and fix a base point x_0 of ''X'', then \pi_1(X,x_0) is the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, o ...
of the topological space ''X'' and the base point x_0, and as a set it has the structure of group; if then let the base point x_0 runs over all points of ''X'', and take the union of all \pi_1(X,x_0), then the set we get has only the structure of groupoid (which is called as the
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a ...
of ''X''): two loops (under equivalence relation of homotopy) may not have the same base point so they cannot multiply with each other. In the language of category, this means here two morphisms may not have the same source object (or target object, because in this case for any morphism the source object and the target object are same: the base point) so they can not compose with each other. Any
directed graph In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pa ...
generates a small category: the objects are the vertices of the graph, and the morphisms are the paths in the graph (augmented with
loop Loop or LOOP may refer to: Brands and enterprises * Loop (mobile), a Bulgarian virtual network operator and co-founder of Loop Live * Loop, clothing, a company founded by Carlos Vasquez in the 1990s and worn by Digable Planets * Loop Mobile, an ...
s as needed) where composition of morphisms is concatenation of paths. Such a category is called the ''
free category In mathematics, the free category or path category generated by a directed graph or quiver is the category that results from freely concatenating arrows together, whenever the target of one arrow is the source of the next. More precisely, the objec ...
'' generated by the graph. The class of all preordered sets with
monotonic function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
s as morphisms forms a category, Ord. It is a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
, i.e. a category obtained by adding some type of structure onto Set, and requiring that morphisms are functions that respect this added structure. The class of all groups with
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) w ...
s as
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s and
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
as the composition operation forms a large category, Grp. Like Ord, Grp is a concrete category. The category Ab, consisting of all
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s and their group homomorphisms, is a
full subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of Grp, and the prototype of an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ...
. Other examples of concrete categories are given by the following table.
Fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
s with
bundle map In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There ...
s between them form a concrete category. The category
Cat The cat (''Felis catus'') is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae and is commonly referred to as the domestic cat or house cat to distinguish it from the wild members of ...
consists of all small categories, with
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
s between them as morphisms.


Construction of new categories


Dual category

Any category ''C'' can itself be considered as a new category in a different way: the objects are the same as those in the original category but the arrows are those of the original category reversed. This is called the ''dual'' or ''opposite category'' and is denoted ''C''op.


Product categories

If ''C'' and ''D'' are categories, one can form the ''product category'' ''C'' × ''D'': the objects are pairs consisting of one object from ''C'' and one from ''D'', and the morphisms are also pairs, consisting of one morphism in ''C'' and one in ''D''. Such pairs can be composed componentwise.


Types of morphisms

A
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
''f'' : ''a'' → ''b'' is called * a ''
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
'' (or ''monic'') if it is left-cancellable, i.e. ''fg1'' = ''fg2'' implies ''g1'' = ''g2'' for all morphisms ''g''1, ''g2'' : ''x'' → ''a''. * an ''
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
'' (or ''epic'') if it is right-cancellable, i.e. ''g1f'' = ''g2f'' implies ''g1'' = ''g2'' for all morphisms ''g1'', ''g2'' : ''b'' → ''x''. * a '' bimorphism'' if it is both a monomorphism and an epimorphism. * a '' retraction'' if it has a right inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b''. * a ''
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
'' if it has a left inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''gf'' = 1''a''. * an ''
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
'' if it has an inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b'' and ''gf'' = 1''a''. * an ''
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a gr ...
'' if ''a'' = ''b''. The class of endomorphisms of ''a'' is denoted end(''a''). * an ''
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphis ...
'' if ''f'' is both an endomorphism and an isomorphism. The class of automorphisms of ''a'' is denoted aut(''a''). Every retraction is an epimorphism. Every section is a monomorphism. The following three statements are equivalent: * ''f'' is a monomorphism and a retraction; * ''f'' is an epimorphism and a section; * ''f'' is an isomorphism. Relations among morphisms (such as ''fg'' = ''h'') can most conveniently be represented with
commutative diagram 350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
s, where the objects are represented as points and the morphisms as arrows.


Types of categories

* In many categories, e.g. Ab or Vect''K'', the hom-sets hom(''a'', ''b'') are not just sets but actually
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s, and the composition of morphisms is compatible with these group structures; i.e. is bilinear. Such a category is called preadditive. If, furthermore, the category has all finite
products Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
and
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduc ...
s, it is called an
additive category In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. Definition A category C is preadditive if all its hom-sets are abelian groups and composition of ...
. If all morphisms have a
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
and a
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
, and all epimorphisms are cokernels and all monomorphisms are kernels, then we speak of an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ...
. A typical example of an abelian category is the category of abelian groups. * A category is called
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
if all small limits exist in it. The categories of sets, abelian groups and topological spaces are complete. * A category is called
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mat ...
if it has finite direct products and a morphism defined on a finite product can always be represented by a morphism defined on just one of the factors. Examples include
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
and CPO, the category of
complete partial order In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central rol ...
s with Scott-continuous functions. * A
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ...
is a certain type of cartesian closed category in which all of mathematics can be formulated (just like classically all of mathematics is formulated in the category of sets). A topos can also be used to represent a logical theory.


See also

*
Enriched category In category theory, a branch of mathematics, an enriched category generalizes the idea of a category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the ho ...
* Higher category theory * Quantaloid *
Table of mathematical symbols A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formul ...


Notes


References

* (now free on-line edition,
GNU FDL The GNU Free Documentation License (GNU FDL or simply GFDL) is a copyleft license for free documentation, designed by the Free Software Foundation (FSF) for the GNU Project. It is similar to the GNU General Public License, giving readers the r ...
). * . * . *. * . * * . * . * . * . * . * . * {{Authority control *