Car–Parrinello molecular dynamics
   HOME

TheInfoList



OR:

Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics (also known as the Car–Parrinello method) or the computational chemistry software package used to implement this method. The CPMD method is one of the major methods for calculating ab-initio molecular dynamics (ab-inito MD or AIMD). Ab initio molecular dynamics (ab initio MD) is a computational method that uses first principles, or fundamental laws of nature, to simulate the motion of atoms in a system. It is a type of molecular dynamics (MD) simulation that does not rely on empirical potentials or force fields to describe the interactions between atoms, but rather calculates these interactions directly from the electronic structure of the system using quantum mechanics. In an ab initio MD simulation, the total energy of the system is calculated at each time step using density functional theory (DFT) or another method of quantum chemistry. The forces acting on each atom are then determined from the gradient of the energy with respect to the atomic coordinates, and the equations of motion are solved to predict the trajectory of the atoms. AIMD permits chemical bond breaking and forming events to occur and accounts for electronic polarization effect. Therefore, Ab initio MD simulations can be used to study a wide range of phenomena, including the structural, thermodynamic, and dynamic properties of materials and chemical reactions. They are particularly useful for systems that are not well described by empirical potentials or force fields, such as systems with strong electronic correlation or systems with many degrees of freedom. However, ab initio MD simulations are computationally demanding and require significant computational resources. The CPMD method is related to the more common Born–Oppenheimer
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
(BOMD) method in that the
quantum mechanical Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
effect of the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s is included in the calculation of energy and forces for the classical motion of the nuclei. CPMD and AIMD are different types of AIMD. However, whereas BOMD treats the
electronic structure In quantum chemistry, electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei. The term encompasses both the wave functions of the electrons and the energies associated with them. Electr ...
problem within the time-''independent''
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
, CPMD explicitly includes the
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
as active degrees of freedom, via (fictitious) dynamical variables. The software is a parallelized
plane wave In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any time t, ...
/
pseudopotential In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced ...
implementation of
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
, particularly designed for ''
ab initio ''Ab initio'' ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ''ab'' ("from") + ''initio'', ablative singular of ''initium'' ("beginning"). Etymology Circa 1600, from Latin, literally "from the beginning", from ab ...
''
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
.


Car–Parrinello method

The Car–Parrinello method is a type of
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
, usually employing periodic boundary conditions, planewave basis sets, and
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
, proposed by Roberto Car and Michele Parrinello in 1985, who were subsequently awarded the
Dirac Medal The Dirac Medal is the name of four awards in the field of theoretical physics, computational chemistry, and mathematics, awarded by different organizations, named in honour of Professor Paul Dirac, one of the great theoretical physicists of the 20 ...
by
ICTP The Abdus Salam International Centre for Theoretical Physics (ICTP) is an international research institute for physical and mathematical sciences that operates under a tripartite agreement between the Italian Government, United Nations Education ...
in 2009. In contrast to Born–Oppenheimer
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
wherein the nuclear (ions) degree of freedom are propagated using ionic forces which are calculated at each iteration by approximately solving the electronic problem with conventional matrix diagonalization methods, the Car–Parrinello method explicitly introduces the electronic degrees of freedom as (fictitious) dynamical variables, writing an extended
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
for the system which leads to a system of coupled
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ver ...
for both ions and electrons. In this way, an explicit electronic minimization at each time step, as done in Born–Oppenheimer MD, is not needed: after an initial standard electronic minimization, the fictitious dynamics of the electrons keeps them on the electronic ground state corresponding to each new ionic configuration visited along the dynamics, thus yielding accurate ionic forces. In order to maintain this adiabaticity condition, it is necessary that the fictitious mass of the electrons is chosen small enough to avoid a significant energy transfer from the ionic to the electronic degrees of freedom. This small fictitious mass in turn requires that the equations of motion are integrated using a smaller time step than the one (1–10 fs) commonly used in Born–Oppenheimer molecular dynamics. Currently, the CPMD method can be applied to systems that consist of a few tens or hundreds of atoms and access timescales on the order of tens of picoseconds.


General approach

In CPMD the
core electron Core electrons are the electrons in an atom that are not valence electrons and do not participate in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, un ...
s are usually described by a
pseudopotential In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced ...
and the
wavefunction A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
of the
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s are approximated by a plane wave basis set. The ground state electronic density (for fixed nuclei) is calculated self-consistently, usually using the
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
method. Kohn-Sham equations are often used to calculate the electronic structure, where electronic orbitals are expanded in a plane-wave basis set. Then, using that density, forces on the nuclei can be computed, to update the trajectories (using, e.g. the
Verlet integration Verlet integration () is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 ...
algorithm). In addition, however, the coefficients used to obtain the electronic orbital functions can be treated as a set of extra spatial dimensions, and trajectories for the orbitals can be calculated in this context. Compared to BOMD, CPMD allows for a more accurate description of the electronic structure and results in a more accurate simulation of the system. However, CPMD is computationally demanding and requires significant computational resources.


Fictitious dynamics

CPMD is an approximation of the Born–Oppenheimer MD (BOMD) method. In BOMD, the electrons' wave function must be minimized via
matrix diagonalization In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) ...
at every step in the trajectory. CPMD uses fictitious dynamics to keep the electrons close to the ground state, preventing the need for a costly self-consistent iterative minimization at each time step. The fictitious dynamics relies on the use of a fictitious electron mass (usually in the range of 400 – 800 a.u.) to ensure that there is very little energy transfer from nuclei to electrons, i.e. to ensure adiabaticity. Any increase in the fictitious electron mass resulting in energy transfer would cause the system to leave the ground-state BOMD surface.


Lagrangian

: \mathcal = \frac\left(\sum_I^\ M_I\dot_I^2 + \mu\sum_i^\int d\mathbf r\ , \dot_i(\mathbf r,t), ^2 \right) - E\left ,\\right+ \sum_\Lambda_(\int d\mathbf r\ \psi_i \psi_j - \delta_), where \mu is the fictitious mass parameter; ''E'' is the Kohn–Sham energy density functional, which outputs energy values when given Kohn–Sham orbitals and nuclear positions.


Orthogonality constraint

: \int d\mathbf r\ \psi_i^*(\mathbf r,t) \psi_j(\mathbf r,t) = \delta_, where ''δij'' is the
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 & ...
.


Equations of motion

The equations of motion are obtained by finding the stationary point of the Lagrangian under variations of ''ψi'' and R''I'', with the orthogonality constraint. : M_I \ddot_I = - \nabla_I \, E\left ,\\right : \mu \ddot_i(\mathbf r,t) = - \frac + \sum_j \Lambda_ \psi_j(\mathbf r,t), where Λ''ij'' is a Lagrangian multiplier matrix to comply with the orthonormality constraint.


Born–Oppenheimer limit

In the formal limit where ''μ'' → 0, the equations of motion approach Born–Oppenheimer molecular dynamics.


Software packages

There are a number of software packages available for performing AIMD simulations. Some of the most widely used packages include: *
Quantum Espresso Quantum ESPRESSO is a suite for first-principles electronic-structure calculations and materials modeling, distributed for free and as free software under the GNU General Public License. It is based on density-functional theory, plane wave basis ...
: an open-source package for performing DFT calculations. It includes a module for AIMD. *
VASP Viação Aérea São Paulo S/A (São Paulo Airways), better known as VASP, was an airline with its head office in the VASP Building on the grounds of São Paulo–Congonhas Airport in São Paulo, Brazil. It had main bases at São Paulo's two ...
: a commercial software package for performing DFT calculations. It includes a module for AIMD. *
Gaussian Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
: a commercial software package that can perform AIMD. *
NWChem NWChem is an ab initio computational chemistry software package which includes quantum chemical and molecular dynamics functionality. It was designed to run on high-performance parallel supercomputers as well as conventional workstation clusters. ...
: an open-source software package for AIMD. *
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a molecular dynamics program from Sandia National Laboratories. LAMMPS makes use of Message Passing Interface (MPI) for parallel communication and is free and open-source softw ...
: an open-source software package for performing classical and ab initio MD simulations. *
SIESTA A ''siesta'' (from Spanish, pronounced and meaning "nap") is a short nap taken in the early afternoon, often after the midday meal. Such a period of sleep is a common tradition in some countries, particularly those in warm-weather zones. Th ...
: an open-source software package for AIMD.


Application

# Studying the behavior of water near a
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
sheet. # Investigating the structure and dynamics of liquid water at ambient temperature. # Solving the Heat transfer physics, heat transfer problems ( heat conduction and
thermal radiation Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) i ...
) between Si/Ge
superlattice A superlattice is a periodic structure of layers of two (or more) materials. Typically, the thickness of one layer is several nanometers. It can also refer to a lower-dimensional structure such as an array of quantum dots or quantum wells. Disc ...
s. # Probing the proton transfer along 1D water chains inside
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
. # Evaluating the critical point of aluminum. # Predicting the amorphous phase of the
phase-change memory Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat pr ...
material
GeSbTe GeSbTe (germanium-antimony-tellurium or GST) is a phase-change material from the group of chalcogenide glasses used in rewritable optical discs and phase-change memory applications. Its recrystallization time is 20 nanoseconds, allowing bitrates of ...
. # Studying the combustion process of lignite-water systems. # Computing and analyzing the IR spectra in terms of H-bond interactions.


See also

*
Computational physics Computational physics is the study and implementation of numerical analysis to solve problems in physics for which a quantitative theory already exists. Historically, computational physics was the first application of modern computers in science, ...
*
Density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
* Computational chemistry *
Molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
* Quantum chemistry *
Ab initio quantum chemistry methods ''Ab initio'' quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excite ...
*
Quantum chemistry computer programs Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DF ...
*
List of software for molecular mechanics modeling This is a list of computer programs that are predominantly used for molecular mechanics calculations. See also * Car–Parrinello molecular dynamics * Comparison of force-field implementations *Comparison of nucleic acid simulation software ...
*
List of quantum chemistry and solid-state physics software Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DFT) ...
*
CP2K CP2K is a freely available ( GPL) quantum chemistry and solid state physics program package, written in Fortran 2008, to perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. It prov ...


References


External links

*http://www.cpmd.org/ *http://www.cp2k.org/ {{DEFAULTSORT:Car-Parrinello molecular dynamics Density functional theory Density functional theory software Computational chemistry Computational chemistry software Molecular dynamics Molecular dynamics software Quantum chemistry Theoretical chemistry Mathematical chemistry Simulation software Scientific simulation software Physics software Chemistry software Science software Algorithms Computational physics Electronic structure methods