HOME

TheInfoList



OR:

In mathematics, specifically
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-
tuple In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an
indexed family In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a ''family of real numbers, indexed by the set of integers'' is a collection of real numbers, wher ...
of sets. The Cartesian product is named after
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product.


Examples


A deck of cards

An illustrative example is the standard 52-card deck. The standard playing card ranks form a 13-element set. The card suits form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52
ordered pairs In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
, which correspond to all 52 possible playing cards. returns a set of the form . returns a set of the form . These two sets are distinct, even disjoint, but there is a natural bijection between them, under which (3, ♣) corresponds to (♣, 3) and so on.


A two-dimensional coordinate system

The main historical example is the
Cartesian plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
in analytic geometry. In order to represent geometrical shapes in a numerical way, and extract numerical information from shapes' numerical representations,
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
assigned to each point in the plane a pair of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, called its coordinates. Usually, such a pair's first and second components are called its ''x'' and ''y'' coordinates, respectively (see picture). The set of all such pairs (i.e., the Cartesian product , with ℝ denoting the real numbers) is thus assigned to the set of all points in the plane.


Most common implementation (set theory)

A formal definition of the Cartesian product from set-theoretical principles follows from a definition of ordered pair. The most common definition of ordered pairs, Kuratowski's definition, is (x, y) = \. Under this definition, (x, y) is an element of \mathcal(\mathcal(X \cup Y)), and X\times Y is a subset of that set, where \mathcal represents the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
operator. Therefore, the existence of the Cartesian product of any two sets in ZFC follows from the axioms of
pairing In mathematics, a pairing is an ''R''-bilinear map from the Cartesian product of two ''R''-modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R''-mod ...
,
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
,
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
, and
specification A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specificati ...
. Since functions are usually defined as a special case of relations, and relations are usually defined as subsets of the Cartesian product, the definition of the two-set Cartesian product is necessarily prior to most other definitions.


Non-commutativity and non-associativity

Let ''A'', ''B'', ''C'', and ''D'' be sets. The Cartesian product is not
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
, : A \times B \neq B \times A, because the ordered pairs are reversed unless at least one of the following conditions is satisfied: * ''A'' is equal to ''B'', or * ''A'' or ''B'' is the empty set. For example: : ''A'' = ; ''B'' = :: ''A'' × ''B'' = × = :: ''B'' × ''A'' = × = : ''A'' = ''B'' = :: ''A'' × ''B'' = ''B'' × ''A'' = × = : ''A'' = ; ''B'' = ∅ :: ''A'' × ''B'' = × ∅ = ∅ :: ''B'' × ''A'' = ∅ × = ∅ Strictly speaking, the Cartesian product is not associative (unless one of the involved sets is empty). : (A\times B)\times C \neq A \times (B \times C) If for example ''A'' = , then .


Intersections, unions, and subsets

The Cartesian product satisfies the following property with respect to intersections (see middle picture). :(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D) In most cases, the above statement is not true if we replace intersection with
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
(see rightmost picture). (A \cup B) \times (C \cup D) \neq (A \times C) \cup (B \times D) In fact, we have that: (A \times C) \cup (B \times D) = A \setminus B) \times C\cup A \cap B) \times (C \cup D)\cup B \setminus A) \times D/math> For the set difference, we also have the following identity: (A \times C) \setminus (B \times D) = \times (C \setminus D)\cup A \setminus B) \times C/math> Here are some rules demonstrating distributivity with other operators (see leftmost picture):Singh, S. (August 27, 2009). ''Cartesian product''. Retrieved from the Connexions Web site: http://cnx.org/content/m15207/1.5/ \begin A \times (B \cap C) &= (A \times B) \cap (A \times C), \\ A \times (B \cup C) &= (A \times B) \cup (A \times C), \\ A \times (B \setminus C) &= (A \times B) \setminus (A \times C), \end :(A \times B)^\complement = \left(A^\complement \times B^\complement\right) \cup \left(A^\complement \times B\right) \cup \left(A \times B^\complement\right)\!, where A^\complement denotes the
absolute complement In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the ...
of ''A''. Other properties related with subsets are: \text A \subseteq B \text A \times C \subseteq B \times C; :\text A,B \neq \emptyset \text A \times B \subseteq C \times D \!\iff\! A \subseteq C \text B \subseteq D.


Cardinality

The cardinality of a set is the number of elements of the set. For example, defining two sets: and Both set ''A'' and set ''B'' consist of two elements each. Their Cartesian product, written as , results in a new set which has the following elements: : ''A'' × ''B'' = . where each element of ''A'' is paired with each element of ''B'', and where each pair makes up one element of the output set. The number of values in each element of the resulting set is equal to the number of sets whose Cartesian product is being taken; 2 in this case. The cardinality of the output set is equal to the product of the cardinalities of all the input sets. That is, : , ''A'' × ''B'', = , ''A'', · , ''B'', . In this case, , ''A'' × ''B'', = 4 Similarly : , ''A'' × ''B'' × ''C'', = , ''A'', · , ''B'', · , ''C'', and so on. The set is
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
if either ''A'' or ''B'' is infinite, and the other set is not the empty set.


Cartesian products of several sets


''n''-ary Cartesian product

The Cartesian product can be generalized to the ''n''-ary Cartesian product over ''n'' sets ''X''1, ..., ''Xn'' as the set : X_1\times\cdots\times X_n = \ of ''n''-tuples. If tuples are defined as nested ordered pairs, it can be identified with . If a tuple is defined as a function on that takes its value at ''i'' to be the ''i''th element of the tuple, then the Cartesian product ''X''1×⋯×''X''''n'' is the set of functions : \.


''n''-ary Cartesian power

The Cartesian square of a set ''X'' is the Cartesian product . An example is the 2-dimensional plane where R is the set of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s: R2 is the set of all points where ''x'' and ''y'' are real numbers (see the Cartesian coordinate system). The ''n''-ary Cartesian power of a set ''X'', denoted X^n, can be defined as : X^n = \underbrace_= \. An example of this is , with R again the set of real numbers, and more generally R''n''. The ''n''-ary Cartesian power of a set ''X'' is isomorphic to the space of functions from an ''n''-element set to ''X''. As a special case, the 0-ary Cartesian power of ''X'' may be taken to be a
singleton set In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the ...
, corresponding to the
empty function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the functi ...
with
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either th ...
''X''.


Infinite Cartesian products

It is possible to define the Cartesian product of an arbitrary (possibly
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
)
indexed family In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a ''family of real numbers, indexed by the set of integers'' is a collection of real numbers, wher ...
of sets. If ''I'' is any
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists ...
, and \_ is a family of sets indexed by ''I'', then the Cartesian product of the sets in \_ is defined to be : \prod_ X_i = \left\, that is, the set of all functions defined on the
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists ...
such that the value of the function at a particular index ''i'' is an element of ''Xi''. Even if each of the ''Xi'' is nonempty, the Cartesian product may be empty if the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, which is equivalent to the statement that every such product is nonempty, is not assumed. For each ''j'' in ''I'', the function : \pi_: \prod_ X_i \to X_, defined by \pi_(f) = f(j) is called the ''j''th
projection map In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a projectio ...
. Cartesian power is a Cartesian product where all the factors ''Xi'' are the same set ''X''. In this case, : \prod_ X_i = \prod_ X is the set of all functions from ''I'' to ''X'', and is frequently denoted ''XI''. This case is important in the study of
cardinal exponentiation In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ...
. An important special case is when the index set is \mathbb, the natural numbers: this Cartesian product is the set of all infinite sequences with the ''i''th term in its corresponding set ''Xi''. For example, each element of : \prod_^\infty \mathbb R = \mathbb R \times \mathbb R \times \cdots can be visualized as a
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
with countably infinite real number components. This set is frequently denoted \mathbb^\omega, or \mathbb^.


Other forms


Abbreviated form

If several sets are being multiplied together (e.g., ''X''1, ''X''2, ''X''3, …), then some authorsOsborne, M., and Rubinstein, A., 1994. ''A Course in Game Theory''. MIT Press. choose to abbreviate the Cartesian product as simply ×''X''''i''.


Cartesian product of functions

If ''f'' is a function from ''X'' to ''A'' and ''g'' is a function from ''Y'' to ''B'', then their Cartesian product is a function from to with : (f\times g)(x, y) = (f(x), g(y)). This can be extended to
tuple In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
s and infinite collections of functions. This is different from the standard Cartesian product of functions considered as sets.


Cylinder

Let A be a set and B \subseteq A. Then the ''cylinder'' of B with respect to A is the Cartesian product B \times A of B and A. Normally, A is considered to be the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
of the context and is left away. For example, if B is a subset of the natural numbers \mathbb, then the cylinder of B is B \times \mathbb.


Definitions outside set theory


Category theory

Although the Cartesian product is traditionally applied to sets, category theory provides a more general interpretation of the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of mathematical structures. This is distinct from, although related to, the notion of a Cartesian square in category theory, which is a generalization of the
fiber product In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often w ...
.
Exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to r ...
is the
right adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
of the Cartesian product; thus any category with a Cartesian product (and a
final object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
) is a
Cartesian closed category In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in math ...
.


Graph theory

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Cartesian product of two graphs ''G'' and ''H'' is the graph denoted by , whose vertex set is the (ordinary) Cartesian product and such that two vertices (''u'',''v'') and (''u''′,''v''′) are adjacent in , if and only if and ''v'' is adjacent with ''v''′ in ''H'', ''or'' and ''u'' is adjacent with ''u''′ in ''G''. The Cartesian product of graphs is not a
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
in the sense of category theory. Instead, the categorical product is known as the
tensor product of graphs In graph theory, the tensor product of graphs and is a graph such that * the vertex set of is the Cartesian product ; and * vertices and are adjacent in if and only if ** is adjacent to in , and ** is adjacent to in . The tensor p ...
.


See also

* Binary relation * Concatenation of sets of strings *
Coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduc ...
* Cross product *
Direct product of groups In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one ...
*
Empty product In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question ...
*
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
*
Exponential object In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed c ...
*
Finitary relation In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x'i'' in ''X'i''. Typically, the relation describes a possible connection between the elemen ...
* Join (SQL) § Cross join * Orders on the Cartesian product of totally ordered sets *
Axiom of power set In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \ ...
(to prove the existence of the Cartesian product) *
Product (category theory) In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or ri ...
*
Product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-s ...
* Product type *
Ultraproduct The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factor ...


References


External links


Cartesian Product at ProvenMath
*

{{Mathematical logic Axiom of choice Operations on sets