HOME

TheInfoList



OR:

Capacitor discharge ignition (CDI) or
thyristor A thyristor () is a solid-state semiconductor device with four layers of alternating P- and N-type materials used for high-power applications. It acts exclusively as a bistable switch (or a latch), conducting when the gate receives a current ...
ignition is a type of automotive
electronic ignition An ignition system generates a spark or heats an electrode to a high temperature to ignite a fuel-air mixture in spark ignition internal combustion engines, oil-fired and gas-fired boilers, rocket engines, etc. The widest application for spark i ...
system which is widely used in
outboard motor An outboard motor is a propulsion system for boats, consisting of a self-contained unit that includes engine, gearbox and propeller or jet drive, designed to be affixed to the outside of the transom. They are the most common motorised method ...
s,
motorcycle A motorcycle (motorbike, bike, or trike (if three-wheeled)) is a two or three-wheeled motor vehicle Steering, steered by a Motorcycle handlebar, handlebar. Motorcycle design varies greatly to suit a range of different purposes: Long-distance ...
s,
lawn mower A lawn mower (also known as a mower, grass cutter or lawnmower) is a device utilizing one or more revolving blades (or a reel) to cut a grass surface to an even height. The height of the cut grass may be fixed by the design of the mower, but g ...
s,
chainsaw A chainsaw (or chain saw) is a portable gasoline-, electric-, or battery-powered saw that cuts with a set of teeth attached to a rotating chain driven along a guide bar. It is used in activities such as tree felling, limbing, bucking, pru ...
s, small engines,
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced by a turbine can be used for generating ...
-powered
aircraft An aircraft is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or by using the Lift (force), dynamic lift of an airfoil, or in ...
, and some cars. It was originally developed to overcome the long charging times associated with high
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
coils used in
inductive discharge ignition Inductive discharge ignition systems were developed in the 19th century as a means to ignite the air–fuel mixture in the combustion chamber of internal combustion engines. The first versions were low tension coils, then low-tension and in tur ...
(IDI) systems, making the
ignition system An ignition system generates a spark or heats an electrode to a high temperature to ignite a fuel-air mixture in spark ignition internal combustion engines, oil-fired and gas-fired boilers, rocket engines, etc. The widest application for spark i ...
more suitable for high engine speeds (for small engines, racing engines and rotary engines). The capacitive-discharge ignition uses
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
discharge
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
to the coil to fire the
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/ai ...
s.


History


Nikola Tesla

The history of the capacitor discharge ignition system can be traced back to the 1890s when it is believed that
Nikola Tesla Nikola Tesla ( ; ,"Tesla"
''Random House Webster's Unabridged Dictionary''.
; 1856 – 7 January 1943 ...
was the first to propose such an ignition system. In first filed February 17, 1897, Tesla writes 'Any suitable moving portion of the apparatus is caused to mechanically control the charging of a condenser and its discharge through a circuit in inductive relation to a secondary circuit leading to the terminals between which the discharge is to occur, so that at the desired intervals the condenser may be discharged through its circuit and induce in the other circuit a current of high
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
which produces the desired discharge.' The patent also describes very generally with a drawing, a mechanical means to accomplish its purpose.


Ford Model K

This was put into practice starting in 1906 on the Ford Model K. The Model K had dual ignition systems, one of which was the Holley-Huff Magneto, or Huff System, manufactured by the Holley Brothers Company. It was designed by Edward S. Huff with US patent #882003 filed July 1, 1905 and assigned to Henry Ford. The system used an engine driven DC generator that charged a capacitor and then discharged the capacitor through the ignition coil primary winding. An excerpt from the 'Motorway' Jan 11 1906, describes its use on Ford six cylinder cars: 'The efficiency of the Ford Magneto is shown by the fact that the instant it is switched in the car will pick up speed and, without changing the position of the ignition control lever, will run at least ten miles an hour faster.'


Robert Bosch

It was the
Robert Bosch Robert Bosch (23 September 1861 – 12 March 1942) was a German industrialist, engineer and inventor, founder of Robert Bosch GmbH. Biography Bosch was born in Albeck, a village to the northeast of Ulm in southern Germany as the eleventh of ...
company which was the pioneer of the first electronic CD ignitions. (Bosch is also responsible for the invention of the high-tension
magneto A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, ...
.) During World War Two, Bosch had fitted
thyratron A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, p ...
(tube type) CD ignitions to some piston engined fighter aircraft. With a CD ignition, an aeroplane engine did not need a warm up period for reliable ignition and so a fighter aircraft could take flight more quickly as a result. This early German system used a rotary DC converter along with fragile tube circuitry, and was not suited to life in a fighter aircraft. Failures occurred within only a few hours. The quest for a reliable electronic means of producing a CD ignition began in earnest during the 1950s. In the mid-1950s, the Engineering Research Institute of the
University of Michigan , mottoeng = "Arts, Knowledge, Truth" , former_names = Catholepistemiad, or University of Michigania (1817–1821) , budget = $10.3 billion (2021) , endowment = $17 billion (2021)As o ...
in cooperation with
Chrysler Corporation Stellantis North America (officially FCA US and formerly Chrysler ()) is one of the " Big Three" automobile manufacturers in the United States, headquartered in Auburn Hills, Michigan. It is the American subsidiary of the multinational automotiv ...
in the United States worked to find a method to produce a viable solution.


Thyratron

They were unsuccessful, but did provide much data on the advantages of such a system, should one be built. Namely; a fast
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
rise time to fire fouled or wet
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/ai ...
s, high energy throughout the RPM range resulting in better starting, more
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
and economy, and lower
emissions Emission may refer to: Chemical products * Emission of air pollutants, notably: **Flue gas, gas exiting to the atmosphere via a flue ** Exhaust gas, flue gas generated by fuel combustion ** Emission of greenhouse gases, which absorb and emit radi ...
. A few engineers, scientists, and hobbyists had built CD ignitions throughout the 1950s using
thyratron A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, p ...
s. However, thyratrons were unsuitable for use in automobiles for two reasons. They required a warm-up period which was a nuisance, and were vulnerable to vibration which drastically shortened their lifetime. In an automotive application, the thyratron CD ignition would fail in either weeks or months. The unreliability of those early thyratron CD ignitions made them unsuitable for mass production despite providing short term benefits. One company at least, Tung-Sol (a manufacturer of vacuum tubes) marketed a thyratron CD ignition, model Tung-Sol EI-4 in 1962, but it was expensive. Despite the failings of thyratron CD ignitions, the improved ignition that they gave made them a worthwhile addition for some drivers. For the
Wankel Wankel may refer to: * Wankel engine, a type of internal combustion engine using an eccentric rotary design instead of reciprocating pistons * Wankel AG, a German company that produces Wankel engines for ultralight aircraft and racing cars People ...
powered NSU Spider of 1964, Bosch resurrected its thyratron method for a CD ignition and used this up until at least 1966. It suffered the same reliability problems as the Tung-Sol EI-4.


Thyristor

It was the SCR,
Silicon-controlled rectifier A silicon controlled rectifier or semiconductor controlled rectifier is a four-layer solid-state current-controlling device. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The principle of four ...
or
thyristor A thyristor () is a solid-state semiconductor device with four layers of alternating P- and N-type materials used for high-power applications. It acts exclusively as a bistable switch (or a latch), conducting when the gate receives a current ...
invented in the late 1950s that replaced the troublesome thyratron, and paved the way for a reliable solid-state CD ignition. This was thanks to Bill Gutzwiller and his team at
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable ene ...
. The SCR was rugged with an indefinite lifetime, but very prone to unwanted trigger impulses which would turn the SCR 'on'. Unwanted trigger impulses in early attempts at using SCRs for CD ignitions were caused by electrical interference, but the main culprit proved to be 'points bounce'. Points bounce is a feature of a points-triggered system. In the standard system with
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Points ...
,
distributor A distributor is an enclosed rotating switch used in spark-ignition internal combustion engines that have mechanically timed ignition. The distributor's main function is to route high voltage current from the ignition coil to the spark plug ...
,
ignition coil An ignition coil (also called a spark coil) is an induction coil in an automobile's ignition system that transforms the battery's voltage to the thousands of volts needed to create an electric spark in the spark plugs to ignite the fuel. So ...
,
ignition Ignition may refer to: Science and technology * Firelighting, the human act of creating a fire for warmth, cooking and other uses * Combustion, an exothermic chemical reaction between a fuel and an oxidant * Fusion ignition, the point at which a ...
(Kettering system) points bounce prevents the coil from saturating fully as RPM increases resulting in a weak spark, thus limiting high speed potential. In a CD ignition, at least those early attempts, the points bounce created unwanted trigger pulses to the SCR (thyristor) that resulted in a series of weak, untimed sparks that caused extreme misfiring. There were two possible solutions to the problem. The first would be to develop another means of triggering the discharge of the
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
to one discharge per power stroke by replacing the points with something else. This could be done magnetically or optically, but that would necessitate more electronics and an expensive distributor. The other option was to keep the points, as they were already in use and reliable, and find a way to overcome the 'points bounce' problem. This was accomplished in April 1962 by a Canadian,
RCAF The Royal Canadian Air Force (RCAF; french: Aviation royale canadienne, ARC) is the air and space force of Canada. Its role is to "provide the Canadian Forces with relevant, responsive and effective airpower". The RCAF is one of three environm ...
officer F.L. Winterburn working in his basement in
Ottawa Ottawa (, ; Canadian French: ) is the capital city of Canada. It is located at the confluence of the Ottawa River and the Rideau River in the southern portion of the province of Ontario. Ottawa borders Gatineau, Quebec, and forms the c ...
,
Ontario Ontario ( ; ) is one of the thirteen provinces and territories of Canada.Ontario is located in the geographic eastern half of Canada, but it has historically and politically been considered to be part of Central Canada. Located in Central Ca ...
. The design used an inexpensive method that would recognize only the first opening of the points and ignore subsequent openings when the points bounced.


Hyland Electronics

A company was formed in Ottawa in early 1963 called Hyland Electronics building CD ignitions using the Winterburn design. The discharge capacitor within the CD ignition had the ability to provide a powerful spark in excess of 4 times the spark power of the Kettering system using the same coil, with the exception that spark energy could be maintained at high rpm unlike the Kettering system. The Hyland unit consumed only four
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s at 5000rpm (8cyl) or 10,000rpm(4cyl).
Dynamometer A dynamometer or "dyno" for short, is a device for simultaneously measuring the torque and rotational speed ( RPM) of an engine, motor or other rotating prime mover so that its instantaneous power may be calculated, and usually displayed by ...
testing during 1963 and 1964 showed a minimum of 5% increase in
horsepower Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are t ...
with the system, with 10% the norm. One example, a
Ford Falcon Ford Falcon is an automobile nameplate applied to several vehicles worldwide. * Ford Falcon (North America), an automobile produced by Ford from 1960 to 1970. * Ford Falcon (Argentina), a car built by Ford Argentina from 1962 until 1991. * For ...
, had an increase in horsepower of 17%. Spark plug lifespan was increased to at least 50,000 miles and points lifespan was greatly extended from 8,000 miles to at least 60,000 miles. Points lifespan became a factor of rubbing block (cam follower) wear and the life cycle of the
spring Spring(s) may refer to: Common uses * Spring (season), a season of the year * Spring (device), a mechanical device that stores energy * Spring (hydrology), a natural source of water * Spring (mathematics), a geometric surface in the shape of a h ...
with some lasting almost 100,000 miles. The Hyland unit was tolerant of varied points gaps. The system could be switched back to standard
inductive discharge ignition Inductive discharge ignition systems were developed in the 19th century as a means to ignite the air–fuel mixture in the combustion chamber of internal combustion engines. The first versions were low tension coils, then low-tension and in tur ...
by the swapping of two wires. The Hyland CD ignition was the first commercially produced solid-state CD ignition and retailed for $39.95 Canadian. The patents were applied for by Winterburn on September 23, 1963 (United States patent# 3,564,581). The design was leaked to the United States in the summer of 1963 when Hyland exposed the design to a US company in an effort to expand sales. Afterward, numerous companies started building their own throughout the 1960s and 1970s without licence. Some were direct copies of the Winterburn circuit. In 1971 Bosch bought the European patent rights (German, French, British) from Winterburn.


Wireless World

The UK Wireless World magazine of January 1970 published a detailed Capacitor-discharge Ignition system as an electronic hobby build project by R.M. Marston. The circuit of this system was similar to the Winterburn patent in that it used a push-pull converted switch mode oscillator for energy transfer to a store - discharge capacitor and conventional contact breakers to initiate a thyristor triggering discharge of the charged CD capacitor. It was stated to offer several advantages over conventional ignition. Among which: better combustion, easy starting even under subzero conditions, immunity to contactor (points) bounce and 2% - 5% fuel economy. Subsequent letters to Wireless World ( March & May 1970), with Mr. Marston's replies, further discussed aspects of the design and build. In July 1971 Mr. A.P. Harris, undergraduate of the City University London made a detailed electrical engineering analysis of the Marston design as well as automotive engine measurement trials to verify fuel economy. These confirmed the benefits of the CD ignition system. However, he found that the core ingredient of the CD design rested on careful hand winding of the switch mode transformer and appropriate selection of oscillator transistors and choice of oscillator frequency.


Current aftermarket systems

For various reasons, probably mostly cost, the majority of currently available aftermarket ignition systems appear to be of the inductive discharge type, although in the 1970s and 1980s a variety of capacitive discharge units were readily available, some retaining the points while others provided an alternative type of timing sensor.


The basic principle

Most ignition systems used in cars are
inductive discharge ignition Inductive discharge ignition systems were developed in the 19th century as a means to ignite the air–fuel mixture in the combustion chamber of internal combustion engines. The first versions were low tension coils, then low-tension and in tur ...
(IDI) systems, which are solely relying on the electric
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
at the coil to produce high-
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
to the
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/ai ...
s as the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
collapses when the
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
to the primary coil winding is disconnected (
disruptive discharge Electrical breakdown or dielectric breakdown is a process that occurs when an electrical insulating material, subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. All insulating mate ...
). In a CDI system, a charging circuit charges a high voltage
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
, and at the instant of ignition, usually determined by a crank position sensor, the system stops charging the capacitor, allowing the capacitor to discharge its output to the ignition coil before reaching the spark plug.


Typical CDI module

A typical CDI module consists of a small
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
, a charging circuit, a triggering circuit and a main
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
. First, the system voltage is raised to 250 to 600 volts by a power supply inside the CDI module. Then, the electric current flows to the charging circuit and charges the capacitor. The
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
inside the charging circuit prevents capacitor discharge before the moment of ignition. When the triggering circuit receives the triggering signal, the triggering circuit stops the operation of the charging circuit, allowing the capacitor to discharge its output rapidly to the low inductance ignition coil. In a CD ignition, the ignition coil acts as a pulse transformer rather than an energy storage medium as it does in an inductive system. The voltage output to the spark plugs is highly dependent on the design of the CD ignition. Voltages exceeding the insulation capabilities of existing ignition components can lead to early failure of those components. Most CD ignitions are made to give very high output voltages but this is not always beneficial. When there is no triggering signal the charging circuit is re-connected to charge the capacitor.


Stored energy

The amount of energy the CDI system can store for the generation of a spark is dependent on the voltage and
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
of the capacitors used, but usually it is around 50 mJ, or more. The standard points/coil/distributor ignition, more properly called the
inductive discharge ignition Inductive discharge ignition systems were developed in the 19th century as a means to ignite the air–fuel mixture in the combustion chamber of internal combustion engines. The first versions were low tension coils, then low-tension and in tur ...
system or Kettering ignition system, produces 25mJ at low speed and drops off quickly as speed increases. One factor often not taken into consideration when discussing CDI spark energy is the actual energy provided to the spark gap versus the energy applied to the primary side of the coil. As a simple example, a typical ignition coil may have a secondary winding resistance of 4000 ohms and a secondary current of 400 milliamperes. Once a spark has struck, the voltage across the spark gap in a running engine drops to a relatively low value, in the order of 1500-2000 volts. This, combined with the fact that the coil secondary current of 400 milliamperes loses approximately 1600 volts through the 4000 ohm secondary resistance means that fully 50% of the energy is lost in heating the coil secondary. Actual measurements show the real world efficiency to be only 35 to 38% when coil primary winding losses are included.


Types

Most CDI modules are generally of two types: ;AC-CDI The AC-CDI module obtains its electricity source solely from the
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
produced by the
alternator An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Gor ...
. The AC-CDI system is the most basic CDI system which is widely used in small engines. Note that not all small engine ignition systems are CDI. Some engines like older Briggs and Stratton use magneto ignition. The entire ignition system, coil and points, are under the magnetized flywheel. Another sort of ignition system commonly used on small off-road motorcycles in the 1960s and 1970s was called Energy Transfer. A coil under the flywheel generated a strong DC current pulse as the flywheel magnet moved over it. This DC current flowed through a wire to an ignition coil mounted outside of the engine. The points sometimes were under the flywheel for two-stroke engines, and commonly on the camshaft for four-stroke engines. This system worked like all Kettering (points/coil) ignition systems... the opening points trigger the collapse of the magnetic field in the ignition coil, producing a high voltage pulse which flows through the spark plug wire to the spark plug. If the engine was rotated while examining the wave-form output of the coil with an oscilloscope, it would appear to be AC. Since the charge-time of the coil corresponds to much less than a full revolution of the crank, the coil really 'sees' only DC current for charging the external ignition coil. Some electronic ignition systems exist that are not CDI. These systems use a transistor to switch the charging current to the coil off and on at the appropriate times. This eliminated the problem of burned and worn points, and provided a hotter spark because of the faster voltage rise and collapse time in the ignition coil. ;DC-CDI The DC-CDI module is powered by the battery, and therefore an additional DC/AC inverter circuit is included in the CDI module to raise the 12 V DC to 400-600 V DC, making the CDI module slightly larger. However, vehicles that use DC-CDI systems have more precise ignition timing and the engine can be started more easily when cold.


Advantages and disadvantages of CDI

A CDI system has a short charging time, a fast voltage rise (between 3 ~ 10 kV/μs) compared to typical inductive systems (300 ~ 500 V/μs) and a short spark duration limited to about 50-600 μs. The fast voltage rise makes CDI systems insensitive to shunt resistance, but the limited spark duration can for some applications be too short to provide reliable ignition. The insensitivity to shunt resistance and the ability to fire multiple sparks can provide improved cold starting ability. Since the CDI system provides only a reduced duration spark, it's also possible to combine this ignition system with ionization measurement. This is done by connecting a low voltage (about 80 V) to the spark plug, except when fired. The current flow over the spark plug can then be used to calculate the temperature and pressure inside the cylinder.


References

* Bosch Automotive Handbook, 5th Edition * United States Patent Office - 3,564,581 * Wireless World, Jan 1970: Capacitor-discharge Ignition System, R.M. Marston * Wireless World, March 1970: Letters to the Editor * Wireless World, May 1970: Letters to the Editor * The City University London, 14-07-1971 B.sc. Honours Degree - Special Report - Automotive Electronic Ignition system. A.P. Harris {{Aircraft piston engine components Ignition systems Gasoline engines