Cyclotruncated Simplectic Honeycomb
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the cyclotruncated simplicial honeycomb (or cyclotruncated n-simplex honeycomb) is a dimensional infinite series of
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic cells built from beeswax by honey bees in their beehive, nests to contain their brood (eggs, larvae, and pupae) and stores of honey and pol ...
s, based on the symmetry of the _n affine
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
. It is given a
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
t0,1, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of ''n+1'' nodes with two adjacent nodes ringed. It is composed of n-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
facets, along with all truncated n-simplices. It is also called a
Kagome lattice In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2. ...
in two and three dimensions, although it is not a lattice. In n-dimensions, each can be seen as a set of ''n+1'' sets of parallel
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
s that divide space. Each hyperplane contains the same honeycomb of one dimension lower. In 1-dimension, the honeycomb represents an
apeirogon In geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the rank 2 case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an in ...
, with alternately colored
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s. In 2-dimensions, the honeycomb represents the
trihexagonal tiling In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2 ...
, with Coxeter graph . In 3-dimensions it represents the
quarter cubic honeycomb The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is c ...
, with Coxeter graph filling space with alternately tetrahedral and truncated tetrahedral cells. In 4-dimensions it is called a cyclotruncated 5-cell honeycomb, with Coxeter graph , with
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, pentachoron, pentatope, pe ...
,
truncated 5-cell In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the Truncation (geometry), truncation of the regular 5-cell. There are two degrees of truncations, including a bitruncation. Truncated 5-cell The ...
, and
bitruncated 5-cell In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell. There are two degrees of truncations, including a bitruncation. Truncated 5-cell The truncated 5-cell, tru ...
facets. In 5-dimensions it is called a cyclotruncated 5-simplex honeycomb, with Coxeter graph , filling space by
5-simplex In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The ...
,
truncated 5-simplex In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a Truncation (geometry), truncation of the regular 5-simplex. There are unique 2 degrees of truncation. Vertices of the truncation 5-simplex are located as p ...
, and bitruncated 5-simplex facets. In 6-dimensions it is called a cyclotruncated 6-simplex honeycomb, with Coxeter graph , filling space by
6-simplex In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. A ...
, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets.


Projection by folding

The cyclotruncated (2''n''+1)- and 2''n''-simplex honeycombs and (2''n''−1)-simplex honeycombs can be projected into the n-dimensional
hypercubic honeycomb In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in -dimensional spaces with the Schläfli symbols and containing the symmetry of Coxeter group (or ) for . The tessellation is constructed from 4 -hypercube ...
by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
:


See also

*
Hypercubic honeycomb In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in -dimensional spaces with the Schläfli symbols and containing the symmetry of Coxeter group (or ) for . The tessellation is constructed from 4 -hypercube ...
* Alternated hypercubic honeycomb * Quarter hypercubic honeycomb *
Simplectic honeycomb In geometry, the simplicial honeycomb (or -simplex honeycomb) is a dimensional infinite series of honeycombs, based on the _n affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of nodes with one node ...
* Omnitruncated simplicial honeycomb


References

* George Olshevsky, ''Uniform Panoploid Tetracombs'', Manuscript (2006) ''(Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)'' *
Branko Grünbaum Branko Grünbaum (; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descentGeombinatorics Alexander Soifer is a Russian-born American mathematician and mathematics author. Soifer obtained his Ph.D. in 1973 and has been a professor of mathematics at the University of Colorado since 1979. He was visiting fellow at Princeton University ...
4(1994), 49 - 56. * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) * Coxeter, H.S.M. ''
Regular Polytopes ''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a th ...
'', (3rd edition, 1973), Dover edition, * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10(1.9 Uniform space-fillings) ** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45{{Honeycombs Honeycombs (geometry) Polytopes Truncated tilings