Cultured Neuronal Network
   HOME

TheInfoList



OR:

A cultured neuronal network is a
cell culture Cell culture or tissue culture is the process by which cell (biology), cells are grown under controlled conditions, generally outside of their natural environment. After cells of interest have been Cell isolation, isolated from living tissue, ...
of neurons that is used as a model to study the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
, especially the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
. Often, cultured neuronal networks are connected to an input/output device such as a multi-electrode array (MEA), thus allowing two-way communication between the researcher and the network. This model has proved to be an invaluable tool to scientists studying the underlying principles behind neuronal
learning Learning is the process of acquiring new understanding, knowledge, behaviors, skills, value (personal and cultural), values, Attitude (psychology), attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and ...
,
memory Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembe ...
, plasticity, connectivity, and
information processing In cognitive psychology, information processing is an approach to the goal of understanding human thinking that treats cognition as essentially Computing, computational in nature, with the mind being the ''software'' and the brain being the ''hard ...
. Cultured neurons are often connected via computer to a real or simulated robotic component, creating a
hybrot A hybrot (short for "hybrid robot") is a cybernetic organism in the form of a robot controlled by a computer consisting of both electronic and biological elements. The biological elements are typically rat neurons connected to a computer chip. T ...
or
animat Animat are artificial animals; the term is a contraction of "animal" and "materials" (and, coincidentally, also the third-person indicative present of the Latin verb ''animō'' which means to "animate, give or bring life"). The term includes physica ...
, respectively. Researchers can then thoroughly study learning and plasticity in a realistic context, where the neuronal networks are able to interact with their environment and receive at least some artificial sensory feedback. One example of this can be seen in the Multielectrode Array Art (MEART) system developed by the Potter Research Group at the
Georgia Institute of Technology The Georgia Institute of Technology (commonly referred to as Georgia Tech, GT, and simply Tech or the Institute) is a public university, public research university and Institute of technology (United States), institute of technology in Atlanta, ...
in collaboration with SymbioticA, The Centre for Excellence in Biological Art, at the
University of Western Australia University of Western Australia (UWA) is a public research university in the Australian state of Western Australia. The university's main campus is in Crawley, Western Australia, Crawley, a suburb in the City of Perth local government area. UW ...
. Another example can be seen in the neurally controlled
animat Animat are artificial animals; the term is a contraction of "animal" and "materials" (and, coincidentally, also the third-person indicative present of the Latin verb ''animō'' which means to "animate, give or bring life"). The term includes physica ...
.


Use as a model


Advantages

The use of cultured neuronal networks as a model for their ''in vivo'' counterparts has been an indispensable resource for decades. It allows researchers to investigate neuronal activity in a much more controlled environment than would be possible in a live organism. Through this mechanism researchers have gleaned important information about the mechanisms behind learning and memory. A cultured neuronal network allows researchers to observe neuronal activity from several vantage points.
Electrophysiological Electrophysiology (from ee the Electron#Etymology, etymology of "electron" ; and ) is the branch of physiology that studies the electrical properties of biological cell (biology), cells and tissues. It involves measurements of voltage change ...
recording and stimulation can take place either across the network or locally via an MEA, and the network development can be visually observed using microscopy techniques. Moreover, chemical analysis of the neurons and their environment is more easily accomplished than in an ''in vivo'' setting.


Disadvantages

Cultured neuronal networks are by definition disembodied cultures of
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s. Thus by being outside their natural environment, the neurons are influenced in ways that are not biologically normal. Foremost among these abnormalities is the fact that the neurons are usually harvested as neural stem cells from a fetus and are therefore disrupted at a critical stage in network development. When the neurons are suspended in solution and subsequently dispensed, the connections previously made are destroyed and new ones formed. Ultimately, the connectivity (and consequently the functionality) of the tissue is changed from what the original template suggested. Another disadvantage lies in the fact that the cultured neurons lack a body and are thus severed from sensory input as well as the ability to express behavior – a crucial characteristic in learning and memory experiments. It is believed that such sensory deprivation has adverse effects on the development of these cultures and may result in abnormal patterns of behavior throughout the network. Cultured networks on traditional MEAs are flat, single-layer sheets of cells with connectivity only two dimensions. Most ''in vivo'' neuronal systems, to the contrary, are large three-dimensional structures with much greater interconnectivity. This remains one of the most striking differences between the model and the reality, and this fact probably plays a large role in skewing some of the conclusions derived from experiments based on this model.


Growing a neuronal network


Neurons used

Because of their wide availability, neuronal networks are typically cultured from dissociated rat neurons. Studies commonly employ rat cortical,
hippocampal The hippocampus (: hippocampi; via Latin from Greek , 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the subiculum ar ...
, and spinal neurons, although lab mouse neurons have also been used. Currently, relatively little research has been conducted on growing primate or other animal neuronal networks. Harvesting neural stem cells requires sacrificing the developing fetus, a process considered too costly to perform on many mammals that are valuable in other studies. One study, however, did make use of human neural stem cells grown into a network to control a robotic actuator. These cells were acquired from a fetus that spontaneously aborted after ten weeks in gestation.


Long-term culture

One of the most formidable problems associated with cultured neuronal networks is their lack of longevity. Like most cell cultures, neuron cultures are highly susceptible to
infection An infection is the invasion of tissue (biology), tissues by pathogens, their multiplication, and the reaction of host (biology), host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmis ...
. They are also susceptible to hyperosmolality from
medium Medium may refer to: Aircraft *Medium bomber, a class of warplane * Tecma Medium, a French hang glider design Arts, entertainment, and media Films * ''The Medium'' (1921 film), a German silent film * ''The Medium'' (1951 film), a film vers ...
evaporation. The long timelines associated with studying neuronal plasticity (usually on the scale of months) makes extending the lifespan of neurons ''in vitro'' paramount. One solution to this problem involves growing cells on an MEA inside a sealed chamber. This chamber serves as a non-humidified incubator that is enclosed by a
fluorinated ethylene propylene Fluorinated ethylene propylene (FEP) is a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from the polytetrafluoroethylene (PTFE) resins in that it is melt-processable using conventional injection molding and Plastic extrusio ...
(FEP) membrane that is permeable to select gases (i.e. gases necessary for metabolism) but impermeable to water and microbes. Other solutions entail an incubator with an impermeable membrane that has a specific mix of gases (air with 5% CO2 is typical) sealed inside.


Microelectrode arrays (MEAs)

A
microelectrode array Microelectrode arrays (MEAs) (also referred to as multielectrode arrays) are devices that contain multiple (tens to thousands) microelectrodes through which neural signals are obtained or delivered, essentially serving as neural interfaces that c ...
(MEA), also commonly called a multielectrode array, is a patterned array of electrodes laid out in a transparent substrate used for communication with neurons in contact with it. The communication can be, and usually is, bidirectional; researchers can both record electrophysiological data from a live network and stimulate it. This device has been an essential biosensor for more than thirty years. It has been used not only in the study of neuronal plasticity and information processing but also in
drug A drug is any chemical substance other than a nutrient or an essential dietary ingredient, which, when administered to a living organism, produces a biological effect. Consumption of drugs can be via insufflation (medicine), inhalation, drug i ...
and
toxin A toxin is a naturally occurring poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919), derived ...
effects on neurons. Additionally, when coupled with a sealed incubation chamber this device greatly reduces the risk of culture contamination by nearly eliminating the need to expose it to air. Currently, commonly used MEAs have relatively poor spatial resolution. They employ approximately sixty electrodes for recording and stimulation in varying patterns in a dish with a typical culture of 50,000 cells or more (or a density of 5,000 cells/mm2). It follows that each electrode in the array services a large cluster of neurons and cannot provide resolute information regarding signal origin and destination; such MEAs are only capable of region-specific data acquisition and stimulation. Ideally it would be possible to record and stimulate from a single or a few neurons at a time. Indeed, companies such as Axion Biosystems are working to provide MEAs with much higher spatial resolution to this end (a maximum of 768 input/output electrodes). Another study investigates establishing a stable one-to-one connection between neurons and electrodes. The goal was to meet the ideal interface situation by establishing a correspondence with every neuron in the network. They do so by caging individual neurons while still allowing the
axons An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see spelling differences) is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action pot ...
and
dendrites A dendrite (from Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the electrochemical stimulation received from other neural cells to the cell body, or soma ...
to extend and make connections. Neurons are contained within ''neurocages'' or other sorts of containers, and the device itself could be referred to as the caged neuron MEA or neurochip. Other research suggests alternative techniques to stimulating neurons ''in vitro''. One study investigates the use of a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
beam to free caged compounds such as
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotransmitters are rele ...
and neuromodulators. A laser beam with wavelength in the UV spectrum would have extremely high spatial accuracy and, by releasing the caged compounds, could be used to influence a very select set of neurons.


Network behavior


Spontaneous network activity

Spontaneous network bursts are a commonplace feature of neuronal networks both ''in vitro'' and ''in vivo''. ''In vitro'', this activity is particularly important in studies on learning and plasticity. Such experiments look intensely at the network-wide activity both before and after experiments in order to discern any changes that might implicate plasticity or even learning. However, confounding this experimental technique is the fact that normal neuronal development induces change in array-wide bursts that could easily skew data. ''In vivo'', however, it has been suggested that these network bursts may form the basis for memories. Depending on experimental perspective, network-wide bursts can be viewed either positively or negatively. In a pathological sense, spontaneous network activity can be attributed to the disembodiment of the neurons; one study saw a marked difference between array-wide firing frequency in cultures that received continuous input versus those that did not. To eliminate aberrant activity, researchers commonly use
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
or synaptic blockers to quiet the network. However, this approach has great costs; quieted networks have little capacity for plasticity due to a diminished ability to create
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
s. A different and perhaps more effective approach is the use of low frequency stimulation that emulates sensory background activity. In a different light, network bursts can be thought of as benign and even good. Any given network demonstrates non-random, structured bursts. Some studies have suggested that these bursts represent information carriers, expression of memory, a means for the network to form appropriate connections, and learning when their pattern changes.


Array-wide burst stability

Stegenga et al. set out to establish the stability of spontaneous network bursts as a function of time. They saw bursts throughout the lifetime of the cell cultures, beginning at 4–7 days ''in vitro'' (DIV) and continuing until culture death. They gathered network burst profiles (BPs) through a mathematical observation of array-wide spiking rate (AWSR), which is the summation of action potentials over all electrodes in an MEA. This analysis yielded the conclusion that, in their culture of
Wistar rat Laboratory rats or lab rats are strain (biology), strains of the rat subspecies ''Rattus norvegicus domestica'' (Domestic Norwegian rat) which are bred and kept for scientific research. While Animal testing on rodents, less commonly used for re ...
neocortical The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sense, sensory perception, cognition, generation of motor cortex ...
cells, the AWSR has long rise and fall times during early development and sharper, more intense profiles after approximately 25 DIV. However, the use of BPs has an inherent shortcoming; BPs are an average of all network activity over time, and therefore only contain temporal information. In order to attain data about the spatial pattern of network activity they developed what they call phase profiles (PPs), which contain electrode specific data. Data was gathered using these PPs on timescales of milliseconds up through days. Their goal was to establish the stability of network burst profiles on the timescale of minutes to hours and to establish stability or developmental changes over the course of days. In summary, they were successful in demonstrating stability over minutes to hours, but the PPs gathered over the course of days displayed significant variability. These finding imply that studies of plasticity of neurons can only be conducted over the course of minutes or hours without bias in network activity introduced by normal development.


Learning vs. plasticity

There is much controversy in the field of neuroscience surrounding whether or not a cultured neuronal network can learn. A crucial step in finding the answer to this problem lies in establishing the difference between
learning Learning is the process of acquiring new understanding, knowledge, behaviors, skills, value (personal and cultural), values, Attitude (psychology), attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and ...
and plasticity. One definition suggests that learning is "the acquisition of novel behavior through experience". Corollary to this argument is the necessity for interaction with the environment around it, something that cultured neurons are virtually incapable of without sensory systems. Plasticity, on the other hand, is simply the reshaping of an existing network by changing connections between neurons: formation and elimination of synapses or extension and retraction of neurites and dendritic spines. But these two definitions are not mutually exclusive; in order for learning to take place, plasticity must also take place. In order to establish learning in a cultured network, researchers have attempted to re-embody the dissociated neuronal networks in either simulated or real environments (see MEART and
animat Animat are artificial animals; the term is a contraction of "animal" and "materials" (and, coincidentally, also the third-person indicative present of the Latin verb ''animō'' which means to "animate, give or bring life"). The term includes physica ...
). Through this method the networks are able to interact with their environment and, therefore, have the opportunity to learn in a more realistic setting. Other studies have attempted to imprint signal patterns onto the networks via artificial stimulation. This can be done by inducing network bursts or by inputting specific patterns to the neurons, from which the network is expected to derive some meaning (as in experiments with animats, where an arbitrary signal to the network indicates that the simulated animal has run into a wall or is moving in a direction, etc.). The latter technique attempts to take advantage of the inherent ability of neuronal networks to make sense of patterns. However, experiments have had limited success in demonstrating a definition of learning that is widely agreed upon. Nevertheless, plasticity in neuronal networks is a phenomenon that is well-established in the neuroscience community, and one that is thought to play a very large role in learning.


See also

*
Artificial life Artificial life (ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline ...
*
Artificial neural network In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a computational model inspired by the structure and functions of biological neural networks. A neural network consists of connected ...
s *
Brain–computer interface A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI), is a direct communication link between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often dire ...
* CoDi *
Cybernetics Cybernetics is the transdisciplinary study of circular causal processes such as feedback and recursion, where the effects of a system's actions (its outputs) return as inputs to that system, influencing subsequent action. It is concerned with ...
* Neural ensemble * Neural engineering *
Neurally controlled animat A neurally controlled animat is the conjunction of #a cultured neuronal networks, cultured neuronal network #a virtual or physical robotic body, the Animat, "living" in a Virtual_reality, virtual computer generated environment or in a physical arena ...
*
Neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, ...


References

{{reflist Computational neuroscience Neural circuitry Neural engineering