HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a branch of mathematics, a cubical set is a set-valued
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
on the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
of (various) ''n''-cubes. Cubical sets have been often considered as an alternative to simplicial sets in combinatorial topology, including in the early work of Daniel Kan and
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ...
. It has been also developed in computer science, in particular in concurrency theory and in homotopy type theory.


See also

* Simplicial presheaf


References

*http://ncatlab.org/nlab/show/cubical+set * Rick Jardine
Cubical sets
Lecture 12 in "Lectures on simplicial presheaves" https://web.archive.org/web/20110104053206/http://www.math.uwo.ca/~jardine/papers/sPre/index.shtml Topology {{topology-stub