In
cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of
vacuum energy
Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.
The effects of vacuum energy can be experiment ...
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(the small value of the
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is a coefficient that Albert Einstein initially added to his field equations of general rel ...
) and the much larger theoretical value of
zero-point energy
Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly Quantum fluctuation, fluctuate in their lowest energy state as described by the Heisen ...
suggested by
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
.
Depending on the
Planck energy
In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of ...
cutoff and other factors, the quantum vacuum energy contribution to the effective cosmological constant is calculated to be between 50 and as many as 120 orders of magnitude greater than has actually been observed,
a state of affairs described by physicists as "the largest discrepancy between theory and experiment in all of science"
and "the worst theoretical prediction in the history of physics".
History
The basic problem of a vacuum energy producing a gravitational effect was identified as early as 1916 by
Walther Nernst
Walther Hermann Nernst (; 25 June 1864 – 18 November 1941) was a German physical chemist known for his work in thermodynamics, physical chemistry, electrochemistry, and solid-state physics. His formulation of the Nernst heat theorem helped ...
.
[
][
][
]
He predicted that the value had to be either zero or very small. In 1926,
Wilhelm Lenz concluded that "If one allows waves of the shortest observed wavelengths cm, ... and if this radiation, converted to material density (), contributed to the curvature of the observable universe – one would obtain a vacuum energy density of such a value that the radius of the observable universe would not reach even to the Moon."
[
][
After the development of quantum field theory in the 1940s, the first to address contributions of quantum fluctuations to the cosmological constant was ]Yakov Zeldovich
Yakov Borisovich Zeldovich (, ; 8 March 1914 – 2 December 1987), also known as YaB, was a leading Soviet people, Soviet Physics, physicist of Belarusians, Belarusian origin, who is known for his prolific contributions in physical Physical c ...
in the 1960s. In quantum mechanics, the vacuum itself should experience quantum fluctuations. In general relativity, those quantum fluctuations constitute energy that would add to the cosmological constant. However, this calculated vacuum energy density is many orders of magnitude bigger than the observed cosmological constant. Original estimates of the degree of mismatch were as high as 120 to 122 orders of magnitude; however, modern research suggests that, when Lorentz invariance
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While ...
is taken into account, the degree of mismatch is closer to 60 orders of magnitude.
With the development of inflationary cosmology in the 1980s, the problem became much more important: as cosmic inflation is driven by vacuum energy, differences in modeling vacuum energy lead to huge differences in the resulting cosmologies. Were the vacuum energy precisely zero, as was once believed, then the expansion of the universe
The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
would not accelerate as observed, according to the standard Λ-CDM model.
Cutoff dependence
The calculated vacuum energy is a positive, rather than negative, contribution to the cosmological constant because the existing vacuum has negative quantum-mechanical ''pressure'', while in general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, the gravitational effect of negative pressure is a kind of repulsion. (Pressure here is defined as the flux of quantum-mechanical momentum across a surface.) Roughly, the vacuum energy is calculated by summing over all known quantum-mechanical fields, taking into account interactions and self-interactions between the ground states, and then removing all interactions below a minimum "cutoff" wavelength to reflect that existing theories break down and may fail to be applicable around the cutoff scale. Because the energy is dependent on how fields interact within the current vacuum state, the vacuum energy contribution would have been different in the early universe; for example, the vacuum energy would have been significantly different prior to electroweak symmetry breaking during the quark epoch.
Renormalization
The vacuum energy in quantum field theory can be set to any value by renormalization
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of the ...
. This view treats the cosmological constant as simply another fundamental physical constant not predicted or explained by theory. Such a renormalization constant must be chosen very accurately because of the many-orders-of-magnitude discrepancy between theory and observation, and many theorists consider this ad-hoc constant as equivalent to ignoring the problem.
Estimated values
The vacuum energy density of the Universe based on 2015 measurements by the Planck collaboration is = ≘ = [Calculated based on the Hubble constant and the ]dark energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
density parameter . or about in geometrized units.
One assessment, made by Jérôme Martin of the Institut d'Astrophysique de Paris in 2012, placed the expected theoretical vacuum energy scale around 108 GeV4, for a difference of about 55 orders of magnitude.
Proposed solutions
Some proposals involve modifying gravity to diverge from general relativity. These proposals face the hurdle that the results of observations and experiments so far have tended to be extremely consistent with general relativity and the ΛCDM model, and inconsistent with thus-far proposed modifications. In addition, some of the proposals are arguably incomplete, because they solve the "new" cosmological constant problem by proposing that the actual cosmological constant is exactly zero rather than a tiny number, but fail to solve the "old" cosmological constant problem of why quantum fluctuations seem to fail to produce substantial vacuum energy in the first place. Nevertheless, many physicists argue that, due in part to a lack of better alternatives, proposals to modify gravity should be considered "one of the most promising routes to tackling" the cosmological constant problem.
Bill Unruh and collaborators have argued that when the energy density of the quantum vacuum is modeled more accurately as a fluctuating quantum field, the cosmological constant problem does not arise. Going in a different direction, George F. R. Ellis and others have suggested that in unimodular gravity, the troublesome contributions simply do not gravitate. Recently, a fully diffeomorphism-invariant action principle that gives the equations of motion for trace-free Einstein gravity has been proposed, where the cosmological constant emerges as an integration constant.
Another argument, due to Stanley Brodsky and Robert Shrock, is that in light front quantization, the quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
vacuum becomes essentially trivial. In the absence of vacuum expectation values, there is no contribution from quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
, weak interactions, and quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
to the cosmological constant. It is thus predicted to be zero in a flat spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
. From light front quantization insight, the origin of the cosmological constant problem is traced back to unphysical non-causal terms in the standard calculation, which lead to an erroneously large value of the cosmological constant.
In 2018, a mechanism for cancelling Λ out has been proposed through the use of a symmetry breaking
In physics, symmetry breaking is a phenomenon where a disordered but Symmetry in quantum mechanics, symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible Bifurcation theory, bifurcatio ...
potential in a Lagrangian formalism in which matter shows a non-vanishing pressure. The model assumes that standard matter provides a pressure which counterbalances the action due to the cosmological constant. Luongo and Muccino have shown that this mechanism permits to take vacuum energy as quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
predicts, but removing the huge magnitude through a counterbalance term due to baryons
In particle physics, a baryon is a type of composite subatomic particle that contains an odd number of valence quarks, conventionally three. Protons and neutrons are examples of baryons; because baryons are composed of quarks, they belong to ...
and cold dark matter
In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
only.
In 1999, Andrew Cohen, David B. Kaplan and Ann Nelson proposed that correlations between the UV and IR cutoffs in effective quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
are enough to reduce the theoretical cosmological constant down to the measured cosmological constant due to the Cohen–Kaplan–Nelson (CKN) bound. In 2021, Nikita Blinov and Patrick Draper confirmed through the holographic principle that the CKN bound predicts the measured cosmological constant, all while maintaining the predictions of effective field theory in less extreme conditions.
Some propose an anthropic solution, and argue that we live in one region of a vast multiverse
The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describ ...
that has different regions with different vacuum energies. These anthropic arguments posit that only regions of small vacuum energy such as the one in which we live are reasonably capable of supporting intelligent life. Such arguments have existed in some form since at least 1981. Around 1987, Steven Weinberg
Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic inter ...
estimated that the maximum allowable vacuum energy for gravitationally-bound structures to form is problematically large, even given the observational data available in 1987, and concluded the anthropic explanation appears to fail; however, more recent estimates by Weinberg and others, based on other considerations, find the bound to be closer to the actual observed level of dark energy. Anthropic arguments gradually gained credibility among many physicists after the discovery of dark energy and the development of the theoretical string theory landscape
In string theory, the string theory landscape (or landscape of vacua) is the collection of possible false vacua,The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The stat ...
, but are still derided by a substantial skeptical portion of the scientific community as being problematic to verify. Proponents of anthropic solutions are themselves divided on multiple technical questions surrounding how to calculate the proportion of regions of the universe with various dark energy constants.
See also
*
*
*
Notes
References
External links
*
* (video by Fermilab's Don "Dr. Don" Lincoln)
{{Standard model of physics
Physical cosmology
Physics beyond the Standard Model