HOME

TheInfoList



OR:

In algebraic geometry, a correspondence between
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex number ...
''V'' and ''W'' is a subset ''R'' of ''V''×''W'', that is closed in the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is ...
. In set theory, a subset of a Cartesian product of two sets is called a
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
or correspondence; thus, a correspondence here is a relation that is defined by algebraic equations. There are some important examples, even when ''V'' and ''W'' are
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
s: for example the Hecke operators of
modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory ...
theory may be considered as correspondences of
modular curve In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular ...
s. However, the definition of a correspondence in algebraic geometry is not completely standard. For instance, Fulton, in his book on
intersection theory In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem o ...
, uses the definition above. In literature, however, a correspondence from a variety ''X'' to a variety ''Y'' is often taken to be a subset ''Z'' of ''X''×''Y'' such that ''Z'' is finite and surjective over each component of ''X''. Note the asymmetry in this latter definition; which talks about a correspondence from ''X'' to ''Y'' rather than a correspondence between ''X'' and ''Y''. The typical example of the latter kind of correspondence is the graph of a function ''f'':''X''→''Y''. Correspondences also play an important role in the construction of motives (cf. presheaf with transfers).


See also

*
Adequate equivalence relation In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined in ...


References

{{algebraic-geometry-stub Algebraic geometry