HOME

TheInfoList



OR:

In mathematics, a conserved quantity of a
dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water i ...
is a function of the dependent variables, the value of which remains constant along each trajectory of the system. Not all systems have conserved quantities, and conserved quantities are not unique, since one can always produce another such quantity by applying a suitable function, such as adding a constant, to a conserved quantity. Since many laws of physics express some kind of conservation, conserved quantities commonly exist in mathematical models of physical systems. For example, any
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
model will have mechanical energy as a conserved quantity as long as the forces involved are conservative.


Differential equations

For a first order system of differential equations :\frac = \mathbf f(\mathbf r, t) where bold indicates vector quantities, a scalar-valued function ''H''(r) is a conserved quantity of the system if, for all time and initial conditions in some specific domain, :\frac = 0 Note that by using the multivariate chain rule, :\frac = \nabla H \cdot \frac = \nabla H \cdot \mathbf f(\mathbf r, t) so that the definition may be written as :\nabla H \cdot \mathbf f(\mathbf r, t) = 0 which contains information specific to the system and can be helpful in finding conserved quantities, or establishing whether or not a conserved quantity exists.


Hamiltonian mechanics

For a system defined by the Hamiltonian \mathcal, a function ''f'' of the generalized coordinates ''q'' and generalized momenta ''p'' has time evolution :\frac = \ + \frac and hence is conserved if and only if \ + \frac = 0. Here \ denotes the Poisson bracket.


Lagrangian mechanics

Suppose a system is defined by the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
''L'' with generalized coordinates ''q''. If ''L'' has no explicit time dependence (so \frac=0), then the energy ''E'' defined by : E = \sum_i \left \dot q_i \frac \right- L is conserved. Furthermore, if \frac = 0, then ''q'' is said to be a cyclic coordinate and the generalized momentum ''p'' defined by : p = \frac is conserved. This may be derived by using the Euler–Lagrange equations.


See also

* Conservative system * Lyapunov function * Hamiltonian system * Conservation law * Noether's theorem * Charge (physics) * Invariant (physics)


References

{{DEFAULTSORT:Conserved Quantity Differential equations Dynamical systems