In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, a conservative force is a
force with the property that the total
work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the
displacement) by a conservative force is zero.
A conservative force depends only on the position of the object. If a force is conservative, it is possible to assign a numerical value for the
potential at any point and conversely, when an object moves from one location to another, the force changes the
potential energy
In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Common types of potential energy include the gravitational potentia ...
of the object by an amount that does not depend on the path taken, contributing to the
mechanical energy and the overall
conservation of energy. If the force is not conservative, then defining a scalar potential is not possible, because taking different paths would lead to conflicting potential differences between the start and end points.
Gravitational force is an example of a conservative force, while
frictional force is an example of a non-conservative force.
Other examples of conservative forces are:
force in elastic spring,
electrostatic force
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
between two electric charges, and
magnetic force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an ele ...
between two magnetic poles. The last two forces are called central forces as they act along the line joining the centres of two charged/magnetized bodies. A central force is conservative if and only if it is spherically symmetric.
Informal definition
Informally, a conservative force can be thought of as a force that ''conserves''
mechanical energy. Suppose a particle starts at point A, and there is a force ''F'' acting on it. Then the particle is moved around by other forces, and eventually ends up at A again. Though the particle may still be moving, at that instant when it passes point A again, it has traveled a closed path. If the net work done by ''F'' at this point is 0, then ''F'' passes the closed path test. Any force that passes the closed path test for all possible closed paths is classified as a conservative force.
The
gravitational force
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
,
spring force
In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of th ...
,
magnetic force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an ele ...
(according to some definitions, see below) and
electric force
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
(at least in a time-independent magnetic field, see
Faraday's law of induction
Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic indu ...
for details) are examples of conservative forces, while
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding (motion), sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative la ...
and
air drag are classical examples of non-conservative forces.
For non-conservative forces, the mechanical energy that is lost (not conserved) has to go somewhere else, by
conservation of energy. Usually the energy is turned into
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
, for example the heat generated by friction. In addition to heat, friction also often produces some
sound
In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid.
In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
energy. The water drag on a moving boat converts the boat's mechanical energy into not only heat and sound energy, but also wave energy at the edges of its
wake
Wake or The Wake may refer to:
Culture
*Wake (ceremony), a ritual which takes place during some funeral ceremonies
*Wakes week, an English holiday tradition
* Parish Wake, another name of the Welsh ', the fairs held on the local parish's patron s ...
. These and other energy losses are irreversible because of the
second law of thermodynamics
The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
.
Path independence
A direct consequence of the closed path test is that the work done by a conservative force on a particle moving between any two points does not depend on the path taken by the particle.
This is illustrated in the figure to the right: The work done by the gravitational force on an object depends only on its change in height because the
gravitational force
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
is conservative. The work done by a conservative force is equal to the negative of change in potential energy during that process. For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.
For example, if a child slides down a frictionless slide, the work done by the gravitational force on the child from the start of the slide to the end is independent of the shape of the slide; it only depends on the vertical displacement of the child.
Mathematical description
A
force field ''F'', defined everywhere in space (or within a
simply-connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space ...
volume of space), is called a ''conservative force'' or ''
conservative vector field'' if it meets any of these three ''equivalent'' conditions:
# The
curl of ''F'' is the zero vector:
where in two dimensions this reduces to:
# There is zero net
work (''W'') done by the force when moving a particle through a trajectory that starts and ends in the same place:
# The force can be written as the negative
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of a
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
,
:
The term ''conservative force'' comes from the fact that when a conservative force exists, it conserves mechanical energy. The most familiar conservative forces are
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, the
electric force
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
(in a time-independent magnetic field, see
Faraday's law), and
spring force
In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of th ...
.
Many forces (particularly those that depend on velocity) are not
force ''fields''. In these cases, the above three conditions are not mathematically equivalent. For example, the
magnetic force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an ele ...
satisfies condition 2 (since the work done by a magnetic field on a charged particle is always zero), but does not satisfy condition 3, and condition 1 is not even defined (the force is not a vector field, so one cannot evaluate its curl). Accordingly, some authors classify the magnetic force as conservative,
[For example, : "In general, a force which depends explicitly upon the velocity of the particle is not conservative. However, the magnetic force (qv×B) can be included among conservative forces in the sense that it acts perpendicular to velocity and hence work done is always zero"]
Web link
/ref> while others do not. The magnetic force is an unusual case; most velocity-dependent forces, such as friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding (motion), sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative la ...
, do not satisfy any of the three conditions, and therefore are unambiguously nonconservative.
Non-conservative force
Despite conservation of total energy, non-conservative forces can arise in classical physics due to neglected degrees of freedom
Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
or from time-dependent potentials.[Friedhelm Kuypers. Klassische Mechanik. WILEY-VCH 2005. Page 9.] Many non-conservative forces may be perceived as macroscopic effects of small-scale conservative forces.[Tom W. B. Kibble, Frank H. Berkshire. Classical mechanics. (5th ed). Imperial College Press 2004 ] For instance, friction may be treated without violating conservation of energy by considering the motion of individual molecules; however, that means every molecule's motion must be considered rather than handling it through statistical methods. For macroscopic systems the non-conservative approximation is far easier to deal with than millions of degrees of freedom.
Examples of non-conservative forces are friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding (motion), sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative la ...
and non-elastic material stress. Friction has the effect of transferring some of the energy from the large-scale motion of the bodies to small-scale movements in their interior, and therefore appear non-conservative on a large scale. General relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
is non-conservative, as seen in the anomalous precession of Mercury's orbit. However, general relativity does conserve a stress–energy–momentum pseudotensor.
See also
* Conservative vector field
* Conservative system
References
{{DEFAULTSORT:Conservative Force
Force