In
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
, a composite field is a field defined in terms of other more "elementary" fields. It might describe a
composite particle
This is a list of known and hypothesized particles.
Elementary particles
Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
(
bound state
Bound or bounds may refer to:
Mathematics
* Bound variable
* Upper and lower bounds, observed limits of mathematical functions
Physics
* Bound state, a particle that has a tendency to remain localized in one or more regions of space
Geography
* ...
) or it might not. It might be
local
Local may refer to:
Geography and transportation
* Local (train), a train serving local traffic demand
* Local, Missouri, a community in the United States
* Local government, a form of public administration, usually the lowest tier of administrat ...
, or it might be
nonlocal.
Noether fields are often composite fields and they are local.
In the generalized
LSZ formalism
In quantum field theory, the LSZ reduction formula is a method to calculate ''S''-matrix elements (the scattering amplitudes) from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lag ...
, composite fields, which are usually nonlocal, are used to model
asymptotic
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
bound states.
See also
*
Fermionic field
In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bo ...
*
Bosonic field
In quantum field theory, a bosonic field is a quantum field whose quanta are bosons; that is, they obey Bose–Einstein statistics. Bosonic fields obey canonical commutation relations, as distinct from the canonical anticommutation relations obeyed ...
*
Auxiliary field In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field A contains an algebraic quadratic term and an arbitrary linear term, whi ...
Quantum field theory
{{Quantum-stub