Complete Stellation Of The Icosahedron
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the complete or final stellation of the icosahedron is the outermost
stellation In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific ...
of the
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
, and is "complete" and "final" because it includes all of the cells in the icosahedron's
stellation diagram In geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one. The lines cause 2D space to be divided up into regions ...
. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by
Max Brückner Johannes Max Brückner (5 August 1860 – 1 November 1934) was a German geometer, known for his collection of polyhedral models. Education and career Brückner was born in Hartau, in the Kingdom of Saxony, a town that is now part of Zitta ...
after the discovery of
Kepler–Poinsot polyhedron In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures. ...
. It can be viewed as an irregular,
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by John ...
, and
star polyhedron In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvex polygon, nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetit ...
.


Background

Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
in his ''
Harmonices Mundi ''Harmonice Mundi'' (Latin: ''The Harmony of the World'', 1619) is a book by Johannes Kepler. In the work, written entirely in Latin, Kepler discusses harmony and congruence in geometrical forms and physical phenomena. The final section of t ...
'' applied the
stellation In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific ...
process, recognizing the
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex List of regular polytopes#Non-convex 2, regular polyhedra. It is composed of 12 pentag ...
and
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at eac ...
as regular polyhedra. However,
Louis Poinsot Louis Poinsot (; 3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a ...
in 1809 rediscovered two more, the
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex List of regular polytopes#Non-convex 2, regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangul ...
and
great dodecahedron In geometry, the great dodecahedron is one of four Kepler–Poinsot polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagons), intersecting each other making a pentagrammic path, with five pentagons meeting at each vert ...
. This was proved by
Augustin-Louis Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
in 1812 that there are only four regular star polyhedrons, known as the
Kepler–Poinsot polyhedron In geometry, a Kepler–Poinsot polyhedron is any of four Regular polyhedron, regular Star polyhedron, star polyhedra. They may be obtained by stellation, stellating the regular Convex polyhedron, convex dodecahedron and icosahedron, and differ f ...
. extended the stellation theory beyond regular forms, and identified ten stellations of the icosahedron, including the ''complete stellation''. published a list of twenty stellation forms (twenty-two including reflective copies), also including the ''complete stellation''. H. S. M. Coxeter,
P. du Val Patrick du Val (March 26, 1903 – January 22, 1987) was a British mathematician, known for his work on algebraic geometry, differential geometry, and general relativity. The concept of Du Val singularity of an algebraic surface is named afte ...
, H. T. Flather and J. F. Petrie in their 1938 book ''
The Fifty Nine Icosahedra ''The Fifty-Nine Icosahedra'' is a book written and illustrated by Harold Scott MacDonald Coxeter, H. S. M. Coxeter, Patrick du Val, P. Du Val, H. T. Flather and J. F. Petrie. It enumerates certain stellations of the regular convex or Platonic re ...
'' stated a set of stellation rules for the regular icosahedron and gave a systematic enumeration of the fifty-nine stellations which conform to those rules. The complete stellation is referenced as the eighth in the book. In Wenninger's book '' Polyhedron Models'', the final stellation of the icosahedron is included as the 17th model of stellated icosahedra with index number W42. In 1995, Andrew Hume named it in his
Netlib Netlib is a repository of software for scientific computing maintained by AT&T, Bell Laboratories, the University of Tennessee and Oak Ridge National Laboratory. Netlib comprises many separate programs and libraries. Most of the code is written in ...
polyhedral database as the echidnahedron after the
echidna Echidnas (), sometimes known as spiny anteaters, are quill-covered monotremes (egg-laying mammals) belonging to the Family (biology), family Tachyglossidae , living in Australia and New Guinea. The four Extant taxon, extant species of echidnas ...
or spiny anteater, a small
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
that is covered with coarse
hair Hair is a protein filament that grows from follicles found in the dermis. Hair is one of the defining characteristics of mammals. The human body, apart from areas of glabrous skin, is covered in follicles which produce thick terminal and ...
and spines and which curls up in a ball to protect itself.


Interpretations


As a stellation

The
stellation In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific ...
of a polyhedron extends the faces of a polyhedron into infinite planes and generates a new polyhedron that is bounded by these planes as faces and the intersections of these planes as edges. ''The Fifty Nine Icosahedra'' enumerates the stellations of the regular
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
, according to a set of rules put forward by
J. C. P. Miller Jeffrey Charles Percy Miller (31 August 1906 – 24 April 1981) was an English mathematician and computing pioneer. He worked in number theory and on geometry, particularly polyhedra, where Miller's monster is a nickname of the great dirhombic ...
, including the complete stellation. The Du Val symbol of the complete stellation is H, because it includes all cells in the stellation diagram up to and including the outermost "h" layer.


As a simple polyhedron

As a simple, visible surface polyhedron, the outward form of the final stellation is composed of 180 triangular faces, which are the outermost triangular regions in the stellation diagram. These join along 270 edges, which in turn meet at 92 vertices, with an
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of 2.Echidnahedron
at polyhedra.org The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The radii of these spheres are in the ratio \sqrt \, : \, \sqrt \, : \, \sqrt \, . When regarded as a three-dimensional solid object with edge lengths a, \varphi a, \varphi^2 a and \varphi^2 a\sqrt (where \varphi is the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
) the complete icosahedron has surface area S=\frac(13211 + \sqrt)a^2\, , and volume V=(210+90\sqrt)a^3\, .


As a star polyhedron

The complete stellation can also be seen as a self-intersecting
star polyhedron In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvex polygon, nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetit ...
having 20 faces corresponding to the 20 faces of the underlying icosahedron. Each face is an irregular 9/4
star polygon In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, Decagram (geometry)#Related figures, certain notable ones can ...
, or
enneagram Enneagram may refer to: * Enneagram (geometry), a nine-sided star polygon with various configurations * Enneagram of Personality, a model of human personality illustrated by an enneagram figure See also * Enneagon In geometry, a nonagon () or ...
. Since three faces meet at each vertex it has 20 × 9 / 3 = 60 vertices (these are the outermost layer of visible vertices and form the tips of the "spines") and 20 × 9 / 2 = 90 edges (each edge of the star polyhedron includes and connects two of the 180 visible edges). When regarded as a star icosahedron, the complete stellation is a
noble polyhedron A noble polyhedron is one which is isohedral (all faces the same) and isogonal (all vertices the same). They were first studied in any depth by Edmund Hess and Max Brückner in the late 19th century, and later by Branko Grünbaum. Classes of n ...
, because it is both
isohedral In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruen ...
(face-transitive) and isogonal (vertex-transitive).


Notes


References

* * * * * * * *


External links


With instructions for constructing a model of the echidnahedron
( .doc) by Ralph Jones
Towards stellating the icosahedron and faceting the dodecahedron
by Guy Inchbald * **

*
VRML VRML (Virtual Reality Modeling Language, pronounced ''vermal'' or by its initials, originally—before 1995—known as the Virtual Reality Markup Language) is a standard file format for representing 3-dimensional (3D) interactive vector graph ...
model: http://www.georgehart.com/virtual-polyhedra/vrml/echidnahedron.wrl *
Netlib Netlib is a repository of software for scientific computing maintained by AT&T, Bell Laboratories, the University of Tennessee and Oak Ridge National Laboratory. Netlib comprises many separate programs and libraries. Most of the code is written in ...

Polyhedron database, model 141
{{DEFAULTSORT:Complete Icosahedron Polyhedral stellation Polyhedra