HOME

TheInfoList



OR:

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ...
complete numberings are generalizations of
Gödel numbering In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of ...
first introduced by
A.I. Mal'tsev Anatoly Ivanovich Maltsev (also: Malcev, Mal'cev; Russian: Анато́лий Ива́нович Ма́льцев; 27 November N.S./14 November O.S. 1909, Moscow Governorate – 7 June 1967, Novosibirsk) was born in Misheronsky, near Moscow, and ...
in 1963. They are studied because several important results like the Kleene's recursion theorem and Rice's theorem, which were originally proven for the Gödel-numbered set of
computable function Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can d ...
s, still hold for arbitrary sets with complete numberings.


Definition

A numbering \nu of a set A is called complete (with respect to an element a \in A) if for every partial computable function f there exists a total computable function h so that (Ershov 1999:482): : \nu \circ h(i) = \begin \nu \circ f(i) & \mbox ~ i \in \operatorname(f), \\ a & \mbox. \end Ershov refers to the element ''a'' as a "special" element for the numbering. A numbering \nu is called precomplete if the weaker property holds: : \nu \circ f(i) = \nu \circ h(i) \qquad i \in \operatorname(f).


Examples

* Any numbering of a singleton set is complete * The
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
on the natural numbers is ''not'' complete * A
Gödel numbering In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of ...
is precomplete


References

* Y.L. Ershov (1999), "Theory of numberings", ''Handbook of Computability Theory'', E.R. Griffor (ed.), Elsevier, pp. 473–506. {{ISBN, 978-0-444-89882-1 * A.I. Mal'tsev, ''Sets with complete numberings''.
Algebra i Logika ''Algebra i Logika'' (English: ''Algebra and Logic'') is a peer-reviewed Russian mathematical journal founded in 1962 by Anatoly Ivanovich Malcev, published by the Siberian Fund for Algebra and Logic at Novosibirsk State University. An English ...
, 1963, vol. 2, no. 2, 4-29 (Russian) Computability theory