Compactness
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically
general topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
, compactness is a property that seeks to generalize the notion of a closed and bounded subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s \mathbb is not compact, because it has infinitely many "punctures" corresponding to the
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
s, and the space of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, but may not be equivalent in other
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s. One such generalization is that a topological space is ''sequentially'' compact if every infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space. The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval , some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence accumulate to 0 (while others accumulate to 1). Since neither 0 nor 1 are members of the open unit interval , those same sets of points would not accumulate to any point of it, so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering \mathbb^1 (the real number line), the sequence of points has no subsequence that converges to any real number. Compactness was formally introduced by Maurice Fréchet in 1906 to generalize the Bolzano–Weierstrass theorem from spaces of geometrical points to spaces of functions. The Arzelà–Ascoli theorem and the Peano existence theorem exemplify applications of this notion of compactness to classical analysis. Following its initial introduction, various equivalent notions of compactness, including sequential compactness and limit point compactness, were developed in general
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s. In general topological spaces, however, these notions of compactness are not necessarily equivalent. The most useful notion — and the standard definition of the unqualified term ''compactness'' — is phrased in terms of the existence of finite families of
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s that " cover" the space, in the sense that each point of the space lies in some set contained in the family. This more subtle notion, introduced by
Pavel Alexandrov Pavel Sergeyevich Alexandrov (), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote roughly three hundred papers, making important contributions to set theory and topology. In topol ...
and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
s. In spaces that are compact in this sense, it is often possible to patch together information that holds locally – that is, in a neighborhood of each point – into corresponding statements that hold throughout the space, and many theorems are of this character. The term compact set is sometimes used as a synonym for compact space, but also often refers to a compact subspace of a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
.


Historical development

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano ( 1817) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A ...
. Bolzano's proof relied on the method of bisection: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts – until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
. In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà. The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by David Hilbert and Erhard Schmidt. For a certain class of Green's functions coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of mean convergence – or convergence in what would later be dubbed a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
. This ultimately led to the notion of a compact operator as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in 1906, had distilled the essence of the Bolzano–Weierstrass property and coined the term ''compactness'' to refer to this general phenomenon (he used the term already in his 1904 paper which led to the famous 1906 thesis). However, a different notion of compactness altogether had also slowly emerged at the end of the 19th century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870,
Eduard Heine Heinrich Eduard Heine (16 March 1821 – 21 October 1881) was a German mathematician. Heine became known for results on special functions and in real analysis. In particular, he authored an important treatise on spherical harmonics and Leg ...
showed that a
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
defined on a closed and bounded interval was in fact uniformly continuous. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by
Émile Borel Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French people, French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biograp ...
( 1895), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue ( 1904). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers. This property was significant because it allowed for the passage from local information about a set (such as the continuity of a function) to global information about the set (such as the uniform continuity of a function). This sentiment was expressed by , who also exploited it in the development of the integral now bearing his name. Ultimately, the Russian school of point-set topology, under the direction of
Pavel Alexandrov Pavel Sergeyevich Alexandrov (), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote roughly three hundred papers, making important contributions to set theory and topology. In topol ...
and Pavel Urysohn, formulated Heine–Borel compactness in a way that could be applied to the modern notion of a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
. showed that the earlier version of compactness due to Fréchet, now called (relative) sequential compactness, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.


Basic examples

Any finite space is compact; a finite subcover can be obtained by selecting, for each point, an open set containing it. A nontrivial example of a compact space is the (closed) unit interval of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. If one chooses an infinite number of distinct points in the unit interval, then there must be some accumulation point among these points in that interval. For instance, the odd-numbered terms of the sequence get arbitrarily close to 0, while the even-numbered ones get arbitrarily close to 1. The given example sequence shows the importance of including the boundary points of the interval, since the limit points must be in the space itself — an open (or half-open) interval of the real numbers is not compact. It is also crucial that the interval be bounded, since in the interval , one could choose the sequence of points , of which no sub-sequence ultimately gets arbitrarily close to any given real number. In two dimensions, closed disks are compact since for any infinite number of points sampled from a disk, some subset of those points must get arbitrarily close either to a point within the disc, or to a point on the boundary. However, an open disk is not compact, because a sequence of points can tend to the boundary – without getting arbitrarily close to any point in the interior. Likewise, spheres are compact, but a sphere missing a point is not since a sequence of points can still tend to the missing point, thereby not getting arbitrarily close to any point ''within'' the space. Lines and planes are not compact, since one can take a set of equally-spaced points in any given direction without approaching any point.


Definitions

Various definitions of compactness may apply, depending on the level of generality. A subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
in particular is called compact if it is closed and bounded. This implies, by the Bolzano–Weierstrass theorem, that any infinite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
from the set has a subsequence that converges to a point in the set. Various equivalent notions of compactness, such as sequential compactness and limit point compactness, can be developed in general
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s. In contrast, the different notions of compactness are not equivalent in general
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s, and the most useful notion of compactness – originally called ''bicompactness'' – is defined using covers consisting of
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s (see ''Open cover definition'' below). That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the Heine–Borel theorem. Compactness, when defined in this manner, often allows one to take information that is known locally – in a
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of each point of the space – and to extend it to information that holds globally throughout the space. An example of this phenomenon is Dirichlet's theorem, to which it was originally applied by Heine, that a continuous function on a compact interval is uniformly continuous; here, continuity is a local property of the function, and uniform continuity the corresponding global property.


Open cover definition

Formally, a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is called ''compact'' if every
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\su ...
of has a finite subcover. That is, is compact if for every collection of open subsets of such that X = \bigcup_S\ , there is a finite subcollection ⊆ such that X = \bigcup_ S\ . Some branches of mathematics such as
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, typically influenced by the French school of Bourbaki, use the term ''quasi-compact'' for the general notion, and reserve the term ''compact'' for topological spaces that are both Hausdorff and ''quasi-compact''. A compact set is sometimes referred to as a ''compactum'', plural ''compacta''.


Compactness of subsets

A subset of a topological space is said to be compact if it is compact as a subspace (in the
subspace topology In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
). That is, is compact if for every arbitrary collection of open subsets of such that K \subseteq \bigcup_ S\ , there is a finite subcollection ⊆ such that K \subseteq \bigcup_ S\ . Because compactness is a topological property, the compactness of a subset depends only on the subspace topology induced on it. It follows that, if K \subset Z \subset Y, with subset equipped with the subspace topology, then is compact in if and only if is compact in .


Characterization

If is a topological space then the following are equivalent: # is compact; i.e., every
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\su ...
of has a finite subcover. # has a sub-base such that every cover of the space, by members of the sub-base, has a finite subcover ( Alexander's sub-base theorem). # is Lindelöf and countably compact. # Any collection of closed subsets of with the finite intersection property has nonempty intersection. # Every net on has a convergent subnet (see the article on nets for a proof). # Every filter on has a convergent refinement. # Every net on has a cluster point. # Every filter on has a cluster point. # Every ultrafilter on converges to at least one point. # Every infinite subset of has a complete accumulation point. # For every topological space , the projection X \times Y \to Y is a closed mapping (see
proper map In mathematics, a function (mathematics), function between topological spaces is called proper if inverse images of compact space, compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. Definition ...
). # Every open cover linearly ordered by subset inclusion contains . Bourbaki defines a compact space (quasi-compact space) as a topological space where each filter has a cluster point (i.e., 8. in the above).


Euclidean space

For any
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, is compact if and only if it is closed and bounded; this is the Heine–Borel theorem. As a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
is a metric space, the conditions in the next subsection also apply to all of its subsets. Of all of the equivalent conditions, it is in practice easiest to verify that a subset is closed and bounded, for example, for a closed interval or closed -ball.


Metric spaces

For any metric space , the following are equivalent (assuming countable choice): # is compact. # is complete and totally bounded (this is also equivalent to compactness for
uniform space In the mathematical field of topology, a uniform space is a topological space, set with additional mathematical structure, structure that is used to define ''uniform property, uniform properties'', such as complete space, completeness, uniform con ...
s). # is sequentially compact; that is, every
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
in has a convergent subsequence whose limit is in (this is also equivalent to compactness for first-countable
uniform space In the mathematical field of topology, a uniform space is a topological space, set with additional mathematical structure, structure that is used to define ''uniform property, uniform properties'', such as complete space, completeness, uniform con ...
s). # is limit point compact (also called weakly countably compact); that is, every infinite subset of has at least one
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A ...
in . # is countably compact; that is, every countable open cover of has a finite subcover. # is an image of a continuous function from the Cantor set. # Every decreasing nested sequence of nonempty closed subsets in has a nonempty intersection. # Every increasing nested sequence of proper open subsets in fails to cover . A compact metric space also satisfies the following properties: # Lebesgue's number lemma: For every open cover of , there exists a number such that every subset of of diameter < is contained in some member of the cover. # is
second-countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
, separable and Lindelöf – these three conditions are equivalent for metric spaces. The converse is not true; e.g., a countable discrete space satisfies these three conditions, but is not compact. # is closed and bounded (as a subset of any metric space whose restricted metric is ). The converse may fail for a non-Euclidean space; e.g. the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but not totally bounded.


Ordered spaces

For an ordered space (i.e. a totally ordered set equipped with the order topology), the following are equivalent: # is compact. # Every subset of has a supremum (i.e. a least upper bound) in . # Every subset of has an infimum (i.e. a greatest lower bound) in . # Every nonempty closed subset of has a maximum and a minimum element. An ordered space satisfying (any one of) these conditions is called a complete lattice. In addition, the following are equivalent for all ordered spaces , and (assuming countable choice) are true whenever is compact. (The converse in general fails if is not also metrizable.): # Every sequence in has a subsequence that converges in . # Every monotone increasing sequence in converges to a unique limit in . # Every monotone decreasing sequence in converges to a unique limit in . # Every decreasing nested sequence of nonempty closed subsets 12 ⊇ ... in has a nonempty intersection. # Every increasing nested sequence of proper open subsets 12 ⊆ ... in fails to cover .


Characterization by continuous functions

Let be a topological space and the ring of real continuous functions on . For each , the evaluation map \operatorname_p\colon C(X)\to \mathbb given by is a ring homomorphism. The kernel of is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
, since the residue field is the field of real numbers, by the first isomorphism theorem. A topological space is pseudocompact if and only if every maximal ideal in has residue field the real numbers. For completely regular spaces, this is equivalent to every maximal ideal being the kernel of an evaluation homomorphism. There are pseudocompact spaces that are not compact, though. In general, for non-pseudocompact spaces there are always maximal ideals in such that the residue field is a ( non-Archimedean) hyperreal field. The framework of non-standard analysis allows for the following alternative characterization of compactness: a topological space is compact if and only if every point of the natural extension is infinitely close to a point of (more precisely, is contained in the monad of ).


Hyperreal definition

A space is compact if its hyperreal extension (constructed, for example, by the ultrapower construction) has the property that every point of is infinitely close to some point of . For example, an open real interval is not compact because its hyperreal extension contains infinitesimals, which are infinitely close to 0, which is not a point of .


Sufficient conditions

* A closed subset of a compact space is compact. * A finite union of compact sets is compact. * A continuous image of a compact space is compact. * The intersection of any non-empty collection of compact subsets of a Hausdorff space is compact (and closed); ** If is not Hausdorff then the intersection of two compact subsets may fail to be compact (see footnote for example). * The product of any collection of compact spaces is compact. (This is
Tychonoff's theorem In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is tra ...
, which is equivalent to the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
.) * In a
metrizable space In topology and related areas of mathematics, a metrizable space is a topological space that is Homeomorphism, homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a Metric (mathematics), metr ...
, a subset is compact if and only if it is sequentially compact (assuming countable choice) * A finite set endowed with any topology is compact.


Properties of compact spaces

* A compact subset of a
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
is closed. ** If is not Hausdorff then a compact subset of may fail to be a closed subset of (see footnote for example). ** If is not Hausdorff then the closure of a compact set may fail to be compact (see footnote for example). * In any
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(TVS), a compact subset is complete. However, every non-Hausdorff TVS contains compact (and thus complete) subsets that are ''not'' closed. * If and are disjoint compact subsets of a Hausdorff space , then there exist disjoint open sets and in such that and . * A continuous bijection from a compact space into a Hausdorff space is a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
. * A compact Hausdorff space is normal and regular. * If a space is compact and Hausdorff, then no finer topology on is compact and no coarser topology on is Hausdorff. * If a subset of a metric space is compact then it is -bounded.


Functions and compact spaces

Since a continuous image of a compact space is compact, the extreme value theorem holds for such spaces: a continuous real-valued function on a nonempty compact space is bounded above and attains its supremum. (Slightly more generally, this is true for an upper semicontinuous function.) As a sort of converse to the above statements, the pre-image of a compact space under a
proper map In mathematics, a function (mathematics), function between topological spaces is called proper if inverse images of compact space, compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. Definition ...
is compact.


Compactifications

Every topological space is an open dense subspace of a compact space having at most one point more than , by the Alexandroff one-point compactification. By the same construction, every locally compact Hausdorff space is an open dense subspace of a compact Hausdorff space having at most one point more than .


Ordered compact spaces

A nonempty compact subset of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s has a greatest element and a least element. Let be a simply ordered set endowed with the order topology. Then is compact if and only if is a complete lattice (i.e. all subsets have suprema and infima).


Examples

* Any
finite topological space In mathematics, a finite topological space is a topological space for which the underlying set (mathematics), point set is finite set, finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are ...
, including the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
, is compact. More generally, any space with a finite topology (only finitely many open sets) is compact; this includes in particular the trivial topology. * Any space carrying the cofinite topology is compact. * Any locally compact Hausdorff space can be turned into a compact space by adding a single point to it, by means of Alexandroff one-point compactification. The one-point compactification of \mathbb is homeomorphic to the circle ; the one-point compactification of \mathbb^2 is homeomorphic to the sphere . Using the one-point compactification, one can also easily construct compact spaces which are not Hausdorff, by starting with a non-Hausdorff space. * The right order topology or left order topology on any bounded totally ordered set is compact. In particular, Sierpiński space is compact. * No
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
with an infinite number of points is compact. The collection of all singletons of the space is an open cover which admits no finite subcover. Finite discrete spaces are compact. * In \mathbb carrying the
lower limit topology In mathematics, the lower limit topology or right half-open interval topology is a topology defined on \mathbb, the set of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of in ...
, no uncountable set is compact. * In the
cocountable topology The cocountable topology, also known as the countable complement topology, is a topology that can be defined on any infinite set X. In this topology, a set is open if its complement in X is either countable or equal to the entire set. Equivalen ...
on an uncountable set, no infinite set is compact. Like the previous example, the space as a whole is not locally compact but is still Lindelöf. * The closed unit interval is compact. This follows from the Heine–Borel theorem. The open interval is not compact: the
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\su ...
\left( \frac, 1 - \frac \right) for does not have a finite subcover. Similarly, the set of ''
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for examp ...
'' in the closed interval is not compact: the sets of rational numbers in the intervals \left , \frac - \frac\righttext\left frac + \frac, 1\right/math> cover all the rationals in , 1for but this cover does not have a finite subcover. Here, the sets are open in the subspace topology even though they are not open as subsets of \mathbb. * The set \mathbb of all real numbers is not compact as there is a cover of open intervals that does not have a finite subcover. For example, intervals , where takes all integer values in , cover \mathbb but there is no finite subcover. * On the other hand, the extended real number line carrying the analogous topology ''is'' compact; note that the cover described above would never reach the points at infinity and thus would ''not'' cover the extended real line. In fact, the set has the
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
to 1, 1of mapping each infinity to its corresponding unit and every real number to its sign multiplied by the unique number in the positive part of interval that results in its absolute value when divided by one minus itself, and since homeomorphisms preserve covers, the Heine-Borel property can be inferred. * For every
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
, the -sphere is compact. Again from the Heine–Borel theorem, the closed unit ball of any finite-dimensional normed vector space is compact. This is not true for infinite dimensions; in fact, a normed vector space is finite-dimensional if and only if its closed unit ball is compact. * On the other hand, the closed unit ball of the dual of a normed space is compact for the weak-* topology. ( Alaoglu's theorem) * The Cantor set is compact. In fact, every compact metric space is a continuous image of the Cantor set. * Consider the set of all functions from the real number line to the closed unit interval, and define a topology on so that a sequence \ in converges towards if and only if \ converges towards for all real numbers . There is only one such topology; it is called the topology of
pointwise convergence In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of function (mathematics), functions can Limit (mathematics), converge to a particular function. It is weaker than uniform co ...
or the
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
. Then is a compact topological space; this follows from the Tychonoff theorem. * A subset of the Banach space of real-valued continuous functions on a compact Hausdorff space is relatively compact if and only if it is equicontinuous and pointwise bounded ( Arzelà–Ascoli theorem). * Consider the set of all functions satisfying the Lipschitz condition for all . Consider on the metric induced by the uniform distance d(f, g) = \sup_ , f(x) - g(x), . Then by the Arzelà–Ascoli theorem the space is compact. * The
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of any bounded linear operator on a
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
is a nonempty compact subset of the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s \mathbb. Conversely, any compact subset of \mathbb arises in this manner, as the spectrum of some bounded linear operator. For instance, a diagonal operator on the Hilbert space \ell^2 may have any compact nonempty subset of \mathbb as spectrum. * The space of Borel
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
s on a compact Hausdorff space is compact for the vague topology, by the Alaoglu theorem. * A collection of probability measures on the Borel sets of Euclidean space is called ''tight'' if, for any positive epsilon, there exists a compact subset containing all but at most epsilon of the mass of each of the measures. Helly's theorem then asserts that a collection of probability measures is relatively compact for the vague topology if and only if it is tight.


Algebraic examples

*
Topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
s such as an
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
are compact, while groups such as a
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
are not. * Since the -adic integers are homeomorphic to the Cantor set, they form a compact set. * Any global field ''K'' is a discrete additive subgroup of its adele ring, and the quotient space is compact. This was used in John Tate's
thesis A thesis (: theses), or dissertation (abbreviated diss.), is a document submitted in support of candidature for an academic degree or professional qualification presenting the author's research and findings.International Standard ISO 7144: D ...
to allow harmonic analysis to be used in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
. * The
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of any
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
with the Zariski topology (that is, the set of all prime ideals) is compact, but never Hausdorff (except in trivial cases). In algebraic geometry, such topological spaces are examples of quasi-compact schemes, "quasi" referring to the non-Hausdorff nature of the topology. * The spectrum of a
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
is compact, a fact which is part of the Stone representation theorem. Stone spaces, compact totally disconnected Hausdorff spaces, form the abstract framework in which these spectra are studied. Such spaces are also useful in the study of profinite groups. * The structure space of a commutative unital Banach algebra is a compact Hausdorff space. * The Hilbert cube is compact, again a consequence of Tychonoff's theorem. * A profinite group (e.g.
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
) is compact.


See also

* Compactly generated space * Compactness theorem * Continuous functions on a compact Hausdorff space * Eberlein compactum * Exhaustion by compact sets * Lindelöf space *
Metacompact space In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an ...
* Noetherian topological space * Orthocompact space *
Paracompact space In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal ...
* Quasi-compact morphism * Precompact set - also called '' totally bounded'' * Relatively compact subspace * Totally bounded


Notes


References


Bibliography

* *. *. * (''Purely analytic proof of the theorem that between any two values which give results of opposite sign, there lies at least one real root of the equation''). * * * * * * * * * * * * * * * * . * *


External links

* ---- {{DEFAULTSORT:Compact Space Compactness (mathematics) General topology Properties of topological spaces Topology