HOME

TheInfoList



OR:

In
operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear oper ...
, the commutant lifting theorem, due to Sz.-Nagy and Foias, is a powerful theorem used to prove several interpolation results.


Statement

The commutant lifting theorem states that if T is a contraction on a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
H, U is its minimal unitary dilation acting on some Hilbert space K (which can be shown to exist by Sz.-Nagy's dilation theorem), and R is an operator on H commuting with T, then there is an operator S on K commuting with U such that :R T^n = P_H S U^n \vert_H \; \forall n \geq 0, and :\Vert S \Vert = \Vert R \Vert. Here, P_H is the projection from K onto H. In other words, an operator from the
commutant In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', ...
of ''T'' can be "lifted" to an operator in the commutant of the unitary dilation of ''T''.


Applications

The commutant lifting theorem can be used to prove the left Nevanlinna-Pick interpolation theorem, the Sarason interpolation theorem, and the two-sided Nudelman theorem, among others.


References

*Vern Paulsen, ''Completely Bounded Maps and Operator Algebras'' 2002, *B Sz.-Nagy and C. Foias, "The "Lifting theorem" for intertwining operators and some new applications", ''Indiana Univ. Math. J'' 20 (1971): 901-904 *Foiaş, Ciprian, ed. ''Metric Constrained Interpolation, Commutant Lifting, and Systems. Vol. 100. Springer, 1998''. {{Functional analysis Operator theory Theorems in functional analysis