HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, two non- zero
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s ''a'' and ''b'' are said to be ''commensurable'' if their ratio ' is a
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
; otherwise ''a'' and ''b'' are called ''incommensurable''. (Recall that a rational number is one that is equivalent to the ratio of two
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
.) There is a more general notion of commensurability in group theory. For example, the numbers 3 and 2 are commensurable because their ratio, , is a rational number. The numbers \sqrt and 2\sqrt are also commensurable because their ratio, \frac=\frac, is a rational number. However, the numbers \sqrt and 2 are incommensurable because their ratio, \frac, is an irrational number. More generally, it is immediate from the definition that if ''a'' and ''b'' are any two non-zero rational numbers, then ''a'' and ''b'' are commensurable; it is also immediate that if ''a'' is any irrational number and ''b'' is any non-zero rational number, then ''a'' and ''b'' are incommensurable. On the other hand, if both ''a'' and ''b'' are irrational numbers, then ''a'' and ''b'' may or may not be commensurable.


History of the concept

The Pythagoreans are credited with the proof of the existence of irrational numbers. When the ratio of the ''lengths'' of two line segments is irrational, the line segments ''themselves'' (not just their lengths) are also described as being incommensurable. A separate, more general and circuitous ancient Greek doctrine of proportionality for geometric magnitude was developed in Book V of Euclid's ''Elements'' in order to allow proofs involving incommensurable lengths, thus avoiding arguments which applied only to a historically restricted definition of
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
.
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's notion of commensurability is anticipated in passing in the discussion between
Socrates Socrates (; ; – 399 BC) was a Ancient Greek philosophy, Greek philosopher from Classical Athens, Athens who is credited as the founder of Western philosophy and as among the first moral philosophers of the Ethics, ethical tradition ...
and the slave boy in Plato's dialogue entitled Meno, in which Socrates uses the boy's own inherent capabilities to solve a complex geometric problem through the Socratic Method. He develops a proof which is, for all intents and purposes, very Euclidean in nature and speaks to the concept of incommensurability.Plato's ''Meno''. Translated with annotations by George Anastaplo and Laurence Berns. Focus Publishing: Newburyport, MA. 2004. The usage primarily comes from translations of
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's ''Elements'', in which two line segments ''a'' and ''b'' are called commensurable precisely if there is some third segment ''c'' that can be laid end-to-end a whole number of times to produce a segment congruent to ''a'', and also, with a different whole number, a segment congruent to ''b''. Euclid did not use any concept of real number, but he used a notion of congruence of line segments, and of one such segment being longer or shorter than another. That ' is rational is a necessary and sufficient condition for the existence of some real number ''c'', and
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s ''m'' and ''n'', such that :''a'' = ''mc'' and ''b'' = ''nc''. Assuming for simplicity that ''a'' and ''b'' are positive, one can say that a
ruler A ruler, sometimes called a rule, scale, line gauge, or metre/meter stick, is an instrument used to make length measurements, whereby a length is read from a series of markings called "rules" along an edge of the device. Usually, the instr ...
, marked off in units of length ''c'', could be used to measure out both a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
of length ''a'', and one of length ''b''. That is, there is a common unit of
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
in terms of which ''a'' and ''b'' can both be measured; this is the origin of the term. Otherwise the pair ''a'' and ''b'' are incommensurable.


In group theory

In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, two
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s Γ1 and Γ2 of a group ''G'' are said to be commensurable if the intersection Γ1 ∩ Γ2 is of finite index in both Γ1 and Γ2. Example: Let ''a'' and ''b'' be nonzero real numbers. Then the subgroup of the real numbers R generated by ''a'' is commensurable with the subgroup generated by ''b'' if and only if the real numbers ''a'' and ''b'' are commensurable, in the sense that ''a''/''b'' is rational. Thus the group-theoretic notion of commensurability generalizes the concept for real numbers. There is a similar notion for two groups which are not given as subgroups of the same group. Two groups ''G''1 and ''G''2 are (abstractly) commensurable if there are subgroups ''H''1 ⊂ ''G''1 and ''H''2 ⊂ ''G''2 of finite index such that ''H''1 is isomorphic to ''H''2.


In topology

Two path-connected
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s are sometimes said to be ''commensurable'' if they have homeomorphic finite-sheeted
covering space In topology, a covering or covering projection is a continuous function, map between topological spaces that, intuitively, Local property, locally acts like a Projection (mathematics), projection of multiple copies of a space onto itself. In par ...
s. Depending on the type of space under consideration, one might want to use homotopy equivalences or diffeomorphisms instead of homeomorphisms in the definition. If two spaces are commensurable, then their fundamental groups are commensurable. Example: any two closed surfaces of
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
at least 2 are commensurable with each other.


References

{{DEFAULTSORT:Commensurability (Mathematics) Real numbers Infinite group theory Greek mathematics