HOME

TheInfoList



OR:

In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, a cograph, or complement-reducible graph, or ''P''4-free graph, is a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
that can be generated from the single-vertex graph ''K''1 by complementation and
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
and
complement graph In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of ...
operations that can be represented concisely by a labeled tree and used algorithmically to efficiently solve many problems such as finding a maximum clique that are hard on more general graph classes. Special types of cograph include
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices i ...
s,
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory ...
s,
cluster graph In graph theory, a branch of mathematics, a cluster graph is a graph formed from the disjoint union of complete graphs. Equivalently, a graph is a cluster graph if and only if it has no three-vertex induced path; for this reason, the cluster g ...
s, and threshold graphs. Cographs are, in turn, special cases of the distance-hereditary graphs, permutation graphs,
comparability graph In graph theory and order theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partial ...
s, and
perfect graph In graph theory, a perfect graph is a Graph (discrete mathematics), graph in which the Graph coloring, chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic nu ...
s.


Definition


Recursive construction

Any cograph may be constructed using the following rules: # any single-vertex graph is a cograph; # if G is a cograph, so is its complement, \overline; # if G and H are cographs, so is their disjoint union, G\cup H. The cographs may be defined as the graphs that can be constructed using these operations, starting from the single-vertex graphs. Alternatively, instead of using the complement operation, one can use the join operation, which consists of forming the disjoint union G\cup H and then adding an edge between every pair of a vertex from G and a vertex from H.


Other characterizations

Several alternative characterizations of cographs can be given. Among them: * A cograph is a graph which does not contain the
path A path is a route for physical travel – see Trail. Path or PATH may also refer to: Physical paths of different types * Bicycle path * Bridle path, used by people on horseback * Course (navigation), the intended path of a vehicle * Desir ...
''P''4 on 4 vertices (and hence of length 3) as an
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
. That is, a graph is a cograph if and only if for any four vertices v_1,v_2,v_3,v_4, if \,\ and \ are edges of the graph then at least one of \,\ or \ is also an edge. * A cograph is a graph all of whose induced subgraphs have the property that any maximal clique intersects any
maximal independent set In graph theory, a maximal independent set (MIS) or maximal stable set is an Independent set (graph theory), independent set that is not a subset of any other independent set. In other words, there is no Vertex (graph theory), vertex outside th ...
in a single vertex. * A cograph is a graph in which every nontrivial induced subgraph has at least two vertices with the same neighbourhoods. * A cograph is a graph in which every connected induced subgraph has a disconnected complement. * A cograph is a graph all of whose connected
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
s have
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
at most 2. * A cograph is a graph in which every connected component is a distance-hereditary graph with diameter at most 2. * A cograph is a graph with
clique-width In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be small for dense graphs. It is defined as the minimum number of ...
at most 2. * A cograph is a
comparability graph In graph theory and order theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partial ...
of a
series-parallel partial order In order theory, order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations... The series-parallel partial orders may be charact ...
. * A cograph is a permutation graph of a
separable permutation In combinatorics, combinatorial mathematics, a separable permutation is a permutation that can be obtained from the trivial permutation 1 by Direct sum of permutations, direct sums and Skew sum of permutations, skew sums. Separable permutations may ...
. * A cograph is a graph all of whose minimal chordal completions are trivially perfect graphs. * A cograph is a hereditarily well-colored graph, a graph such that every
greedy coloring In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence an ...
of every induced subgraph uses an optimal number of colors. * A graph is a cograph if and only if every vertex order of the graph is a perfect order, since having no ''P''4 means that no obstruction to a perfect order will exist in any vertex order.


Cotrees

A cotree is a tree in which the internal nodes are labeled with the numbers 0 and 1. Every cotree ''T'' defines a cograph ''G'' having the leaves of ''T'' as vertices, and in which the subtree rooted at each node of ''T'' corresponds to the
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
in ''G'' defined by the set of leaves descending from that node: * A subtree consisting of a single leaf node corresponds to an induced subgraph with a single vertex. * A subtree rooted at a node labeled 0 corresponds to the union of the subgraphs defined by the children of that node. * A subtree rooted at a node labeled 1 corresponds to the ''join'' of the subgraphs defined by the children of that node; that is, we form the union and add an edge between every two vertices corresponding to leaves in different subtrees. Alternatively, the join of a set of graphs can be viewed as formed by complementing each graph, forming the union of the complements, and then complementing the resulting union. An equivalent way of describing the cograph formed from a cotree is that two vertices are connected by an edge if and only if the
lowest common ancestor In graph theory and computer science, the lowest common ancestor (LCA) (also called least common ancestor) of two nodes and in a Tree (graph theory), tree or directed acyclic graph (DAG) is the lowest (i.e. deepest) node that has both and a ...
of the corresponding leaves is labeled by 1. Conversely, every cograph can be represented in this way by a cotree. If we require the labels on any root-leaf path of this tree to alternate between 0 and 1, this representation is unique.


Computational properties

Cographs may be recognized in linear time, and a cotree representation constructed, using
modular decomposition In Graph (discrete mathematics), graph theory, the modular decomposition is a decomposition of a Graph (discrete mathematics), graph into subsets of Vertex (graph theory), vertices called modules. A ''module'' is a generalization of a Connected c ...
, partition refinement, LexBFS , or
split decomposition In graph theory, a split of an undirected graph is a Cut (graph theory), cut whose cut-set forms a complete bipartite graph. A graph is prime if it has no splits. The splits of a graph can be collected into a tree-like structure called the split d ...
. Once a cotree representation has been constructed, many familiar graph problems may be solved via simple bottom-up calculations on the cotrees. For instance, to find the maximum clique in a cograph, compute in bottom-up order the maximum clique in each subgraph represented by a subtree of the cotree. For a node labeled 0, the maximum clique is the maximum among the cliques computed for that node's children. For a node labeled 1, the maximum clique is the union of the cliques computed for that node's children, and has size equal to the sum of the children's clique sizes. Thus, by alternately maximizing and summing values stored at each node of the cotree, we may compute the maximum clique size, and by alternately maximizing and taking unions, we may construct the maximum clique itself. Similar bottom-up tree computations allow the maximum independent set, vertex coloring number, maximum clique cover, and Hamiltonicity (that is the existence of a
Hamiltonian cycle In the mathematics, mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path (graph theory), path in an undirected or directed graph that visits each vertex (graph theory), vertex exactly once. A Hamiltonian cycle (or ...
) to be computed in linear time from a cotree representation of a cograph. Because cographs have bounded clique-width,
Courcelle's theorem In the study of graph algorithms, Courcelle's theorem is the statement that every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded treewidth. The result was first proved by B ...
may be used to test any property in the monadic second-order logic of graphs (MSO1) on cographs in linear time. The problem of testing whether a given graph is ''k'' vertices away and/or ''t'' edges away from a cograph is fixed-parameter tractable. Deciding if a graph can be ''k''-edge-deleted to a cograph can be solved in O*(2.562''k'') time, and ''k''-edge-edited to a cograph in O*(4.612''k''). If the largest induced cograph subgraph of a graph can be found by deleting ''k'' vertices from the graph, it can be found in O*(3.115''k'') time. Two cographs are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
if and only if their cotrees (in the canonical form with no two adjacent vertices with the same label) are isomorphic. Because of this equivalence, one can determine in linear time whether two cographs are isomorphic, by constructing their cotrees and applying a linear time isomorphism test for labeled trees. If ''H'' is an
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
of a cograph ''G'', then ''H'' is itself a cograph; the cotree for ''H'' may be formed by removing some of the leaves from the cotree for ''G'' and then suppressing nodes that have only one child. It follows from Kruskal's tree theorem that the
relation Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * ...
of being an induced subgraph is a
well-quasi-ordering In mathematics, specifically order theory, a well-quasi-ordering or wqo on a set X is a quasi-ordering of X for which every infinite sequence of elements x_0, x_1, x_2, \ldots from X contains an increasing pair x_i \leq x_j with i x_2> \cdots) ...
on the cographs. Thus, if a subfamily of the cographs (such as the planar cographs) is closed under induced subgraph operations then it has a finite number of forbidden induced subgraphs. Computationally, this means that testing membership in such a subfamily may be performed in linear time, by using a bottom-up computation on the cotree of a given graph to test whether it contains any of these forbidden subgraphs. However, when the sizes of two cographs are both variable, testing whether one of them is an induced subgraph of the other is
NP-complete In computational complexity theory, NP-complete problems are the hardest of the problems to which ''solutions'' can be verified ''quickly''. Somewhat more precisely, a problem is NP-complete when: # It is a decision problem, meaning that for any ...
. Cographs play a key role in algorithms for recognizing read-once functions. Some counting problems also become tractable when the input is restricted to be a cograph. For instance, there are polynomial-time algorithms to count the number of
cliques A clique ( AusE, CanE, or ; ), in the social sciences, is a small group of individuals who interact with one another and share similar interests rather than include others. Interacting with cliques is part of normative social development regardle ...
or the number of maximum cliques in a cograph.


Enumeration

The number of connected cographs with ''n'' vertices, for ''n'' = 1, 2, 3, ..., is: :1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, ... For ''n'' > 1 there are the same number of disconnected cographs, because for every cograph exactly one of it or its
complement graph In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of ...
is connected.


Related graph families


Subclasses

Every
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices i ...
is a cograph, with a cotree consisting of a single 1-node and leaves. Similarly, every
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory ...
is a cograph. Its cotree is rooted at a 1-node which has two 0-node children, one with leaf children and one with leaf children. A Turán graph may be formed by the join of a family of equal-sized independent sets; thus, it also is a cograph, with a cotree rooted at a 1-node that has a child 0-node for each independent set. Every threshold graph is also a cograph. A threshold graph may be formed by repeatedly adding one vertex, either connected to all previous vertices or to none of them; each such operation is one of the disjoint union or join operations by which a cotree may be formed.


Superclasses

The characterization of cographs by the property that every clique and maximal independent set have a nonempty intersection is a stronger version of the defining property of strongly perfect graphs, in which there every induced subgraph contains an independent set that intersects all maximal cliques. In a cograph, every maximal independent set intersects all maximal cliques. Thus, every cograph is strongly perfect. The fact that cographs are ''P''4-free implies that they are perfectly orderable. In fact, every vertex order of a cograph is a perfect order which further implies that max clique finding and min colouring can be found in linear time with any greedy colouring and without the need for a cotree decomposition. Every cograph is a distance-hereditary graph, meaning that every
induced path In the mathematical area of graph theory, an induced path in an undirected graph is a path that is an induced subgraph of . That is, it is a sequence of vertices in such that each two adjacent vertices in the sequence are connected by an edge ...
in a cograph is a
shortest path In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two ...
. The cographs may be characterized among the distance-hereditary graphs as having diameter at most two in each connected component. Every cograph is also a
comparability graph In graph theory and order theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partial ...
of a
series-parallel partial order In order theory, order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations... The series-parallel partial orders may be charact ...
, obtained by replacing the disjoint union and join operations by which the cograph was constructed by disjoint union and ordinal sum operations on partial orders. Because strongly perfect graphs, perfectly orderable graphs, distance-hereditary graphs, and comparability graphs are all
perfect graph In graph theory, a perfect graph is a Graph (discrete mathematics), graph in which the Graph coloring, chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic nu ...
s, cographs are also perfect.


Notes


References

*. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. * *. *. *.


External links

* * {{mathworld , urlname=Cograph , title=Cograph, mode=cs2 Graph families Perfect graphs Graph operations