set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
, if is a
regular
The term regular can mean normal or in accordance with rules. It may refer to:
People
* Moses Regular (born 1971), America football player
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instrum ...
uncountable
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal numb ...
cardinal
Cardinal or The Cardinal may refer to:
Animals
* Cardinal (bird) or Cardinalidae, a family of North and South American birds
**'' Cardinalis'', genus of cardinal in the family Cardinalidae
**'' Cardinalis cardinalis'', or northern cardinal, ...
then the filter of all sets containing a club subset of is a -complete filter closed under
diagonal intersection Diagonal intersection is a term used in mathematics, especially in set theory.
If \displaystyle\delta is an ordinal number and \displaystyle\langle X_\alpha \mid \alpha<\delta\rangle
is a
called the club filter.
To see that this is a filter, note that since it is thus both closed and unbounded (see
club set
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name ''club'' is a contraction ...
). If then any
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of containing is also in since and therefore anything containing it, contains a club set.
It is a -complete filter because the
intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, thei ...
of fewer than club sets is a club set. To see this, suppose is a
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of club sets where Obviously is closed, since any sequence which appears in appears in every and therefore its
limit
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2019 ...
is also in every To show that it is unbounded, take some Let be an increasing sequence with and for every Such a sequence can be constructed, since every is unbounded. Since and is regular, the limit of this sequence is less than We call it and define a new sequence similar to the previous sequence. We can repeat this process, getting a sequence of sequences where each element of a sequence is greater than every member of the previous sequences. Then for each is an increasing sequence contained in and all these sequences have the same limit (the limit of ). This limit is then contained in every and therefore and is greater than
To see that is closed under diagonal intersection, let be a sequence of club sets, and let To show is closed, suppose and Then for each for all Since each is closed, for all so To show is unbounded, let and define a sequence as follows: and is the minimal element of such that Such an element exists since by the above, the intersection of club sets is club. Then and since it is in each with
See also
*
*
*
References
* Jech, Thomas, 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''. Springer. .
{{Set theory
Set theory