HOME

TheInfoList



OR:

Cladding in
optical fiber An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
s is one or more layers of materials of lower
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
in intimate contact with a
core Core or cores may refer to: Science and technology * Core (anatomy), everything except the appendages * Core (laboratory), a highly specialized shared research resource * Core (manufacturing), used in casting and molding * Core (optical fiber ...
material of higher refractive index. The cladding causes light to be confined to the core of the fiber by
total internal reflection In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely refl ...
at the boundary between the core and cladding. Light propagation within the cladding is typically suppressed for most fibers. However, some fibers can support ''cladding modes'' in which light propagates through the cladding as well as the core. Depending upon the quantity of modes that are supported, they are referred to as
multi-mode A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and micr ...
fibers and
single-mode A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and micr ...
fibers. Improving transmission through fibers by applying a cladding was discovered in 1953 by Dutch scientist Bram van Heel.


History

The fact that transmission through fibers could be improved by applying a cladding was discovered in 1953 by van Heel, who used it to demonstrate image transmission through a bundle of optical fibers. Early cladding materials included
oils An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) and lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturat ...
,
waxes Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low ...
, and
polymers A polymer () is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, b ...
. Lawrence E. Curtiss at the
University of Michigan The University of Michigan (U-M, U of M, or Michigan) is a public university, public research university in Ann Arbor, Michigan, United States. Founded in 1817, it is the oldest institution of higher education in the state. The University of Mi ...
developed the first glass cladding in 1956, by inserting a glass rod into a tube of glass with a lower refractive index, fusing the two together, and drawing the composite structure into an optical fiber.


Modes

A cladding mode is a
mode Mode ( meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * MO''D''E (magazine), a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is the setting fo ...
that is confined to the cladding of an
optical fiber An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
by virtue of the fact that the cladding has a higher
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
than the surrounding
medium Medium may refer to: Aircraft *Medium bomber, a class of warplane * Tecma Medium, a French hang glider design Arts, entertainment, and media Films * ''The Medium'' (1921 film), a German silent film * ''The Medium'' (1951 film), a film vers ...
, which is either air or the primary polymer overcoat. These modes are generally undesired. Modern fibers have a primary polymer overcoat with a refractive index that is slightly higher than that of the cladding, so that light propagating in the cladding is rapidly attenuated and disappears after only a few centimeters of
propagation Propagation can refer to: *Chain propagation in a chemical reaction mechanism *Crack propagation, the growth of a crack during the fracture of materials *Propaganda, non-objective information used to further an agenda *Reproduction, and other forms ...
. An exception to this is
double-clad fiber Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the ''core''. It is surrounded by the ''inner cladding'', which is surr ...
, which is designed to support a mode in its inner cladding, as well as one in its core.


Advantages

In the production of glass fibers, there will inevitably be surface irregularities (ex. pore and cracks) that will scatter light when struck and lessen the total travel distance of the light. The inclusion of a glass cladding greatly reduces the attenuation caused by these surface irregularities. This is due to the light scattering less at the glass/glass interface than it would have at the glass/air interface for a fiber without cladding. The two primary factors that allow for this are the smaller change in index of refraction seen between two surfaces of glass, as well as surface irregularities on the cladding not interfering with the light beams. The inclusion of glass cladding is also an improvement over just applying a polymer coating, as glass will typically be stronger, more homogenous, and cleaner. Additionally, the inclusion of a cladding layer also allows for the usage of smaller glass fiber cores. With most glass fibers have a cladding that raises the total outer diameter to 125
microns The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
.


Effect on numerical aperture

The
numerical aperture In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, has the property ...
of a multimode optical fiber is a function of the indices of refraction of the cladding and the core: : \rm = \sqrt The numerical aperture allows for the calculation of the acceptance angle of incidence at the fiber interface. Which will give the maximum angle at which the incidence light can enter the core and maintain total internal reflection: \rm = \sin(\theta_A) By combining both of these equations it can be seen in the diagram above how \theta_A is a function of n_1 and n_2, where n_1 is the index of refraction of the core and n_2 n_2 is the index of refraction of the cladding.


Recent developments

Due to the relatively greater transmission of light they offer, fiber optic cores and claddings are usually made from highly purified silica glass. Certain impurities can be added to impart various properties, such as increasing transmission distance or improving fiber flexibility. There has been significant work done in improving these properties within the last several years.


References

Fiber optics Optics {{More categories, date=October 2024