In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Cayley transform, named after
Arthur Cayley, is any of a cluster of related things. As originally described by , the Cayley transform is a mapping between
skew-symmetric matrices and
special orthogonal matrices. The transform is a
homography used in
real analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
,
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
, and
quaternionic analysis. In the theory of
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s, the Cayley transform is a mapping between
linear operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
s .
Real homography
A simple example of a Cayley transform can be done on the
real projective line. The Cayley transform here will permute the elements of in sequence. For example, it maps the
positive real numbers to the interval
��1, 1 Thus the Cayley transform is used to adapt
Legendre polynomials
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and t ...
for use with functions on the positive real numbers with
Legendre rational functions.
As a real
homography, points are described with
projective coordinates, and the mapping is
:
Complex homography
On the
upper half of the
complex plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, the Cayley transform is:
:
Since
is mapped to
, and
Möbius transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form
f(z) = \frac
of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying .
Geometrically ...
s permute the
generalised circles in the
complex plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
,
maps the real line to the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
. Furthermore, since
is a
homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
and
is taken to 0 by
, the upper half-plane is mapped to the
unit disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1:
:D_1(P) = \.\,
The closed unit disk around ''P'' is the set of points whose d ...
.
In terms of the
models
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , .
Models can be divided int ...
of
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For a ...
, this Cayley transform relates the
Poincaré half-plane model to the
Poincaré disk model
In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk t ...
.
In electrical engineering the Cayley transform has been used to map a
reactance half-plane to the
Smith chart used for
impedance matching
In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or ...
of transmission lines.
Quaternion homography
In the
four-dimensional space
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...
of
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s
, the
versors
:
form the unit
3-sphere.
Since quaternions are non-commutative, elements of its
projective line
In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the ...
have homogeneous coordinates written