In
general topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
and
analysis
Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
, a Cauchy space is a generalization of
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s and
uniform space
In the mathematical field of topology, a uniform space is a topological space, set with additional mathematical structure, structure that is used to define ''uniform property, uniform properties'', such as complete space, completeness, uniform con ...
s for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a
Cauchy filter, in order to study
completeness in
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s. The
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
of Cauchy spaces and ''Cauchy continuous maps'' is
Cartesian closed, and contains the category of
proximity space
In topology, a proximity space, also called a nearness space, is an axiomatization of the intuitive notion of "nearness" that hold set-to-set, as opposed to the better known point-to-set notion that characterize topological spaces.
The concept was ...
s.
Definition
Throughout,
is a set,
denotes the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of
and all
filters
Filtration is a physical process that separates solid matter and fluid from a mixture.
Filter, filtering, filters or filtration may also refer to:
Science and technology
Computing
* Filter (higher-order function), in functional programming
* Fil ...
are assumed to be
proper/non-degenerate (i.e. a filter may not contain the empty set).
A Cauchy space is a pair
consisting of a set
together with a
family
Family (from ) is a Social group, group of people related either by consanguinity (by recognized birth) or Affinity (law), affinity (by marriage or other relationship). It forms the basis for social order. Ideally, families offer predictabili ...
of (proper) filters on
having all of the following properties:
# For each
the discrete
ultrafilter
In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
at
denoted by
is in
# If
is a proper filter, and
is a subset of
then
# If
and if each member of
intersects each member of
then
An element of
is called a Cauchy filter, and a map
between Cauchy spaces
and
is Cauchy continuous if
; that is, the image of each Cauchy filter in
is a Cauchy filter base in
Properties and definitions
Any Cauchy space is also a
convergence space
In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a that satisfies certain properties relating elements of ''X'' with the Family of sets, family of Filter (set theory), filters on ...
, where a filter
converges to
if
is Cauchy. In particular, a Cauchy space carries a natural
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
.
Examples
* Any
uniform space
In the mathematical field of topology, a uniform space is a topological space, set with additional mathematical structure, structure that is used to define ''uniform property, uniform properties'', such as complete space, completeness, uniform con ...
(hence any
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
,
topological vector space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topological vector space is a vector space that is als ...
, or
topological group
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
) is a Cauchy space; see
Cauchy filter for definitions.
* A
lattice-ordered group carries a natural Cauchy structure.
* Any
directed set
In mathematics, a directed set (or a directed preorder or a filtered set) is a preordered set in which every finite subset has an upper bound. In other words, it is a non-empty preordered set A such that for any a and b in A there exists c in A wit ...
may be made into a Cauchy space by declaring a filter
to be Cauchy if,
given any
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by e ...
element
there is an element
such that
is either a
singleton or a
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of the tail
Then given any other Cauchy space
the
Cauchy-continuous function In mathematics, a Cauchy-continuous, or Cauchy-regular, function is a special kind of continuous function between metric spaces (or more general spaces). Cauchy-continuous functions have the useful property that they can always be (uniquely) extende ...
s from
to
are the same as the
Cauchy nets in
indexed by
If
is
complete, then such a function may be extended to the completion of
which may be written
the value of the extension at
will be the limit of the net. In the case where
is the set
of
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s (so that a Cauchy net indexed by
is the same as a
Cauchy sequence
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
), then
receives the same Cauchy structure as the metric space
Category of Cauchy spaces
The natural notion of
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
between Cauchy spaces is that of a
Cauchy-continuous function In mathematics, a Cauchy-continuous, or Cauchy-regular, function is a special kind of continuous function between metric spaces (or more general spaces). Cauchy-continuous functions have the useful property that they can always be (uniquely) extende ...
, a concept that had earlier been studied for uniform spaces.
See also
*
*
*
*
*
References
* Eva Lowen-Colebunders (1989).
Function Classes of Cauchy Continuous Maps. Dekker, New York, 1989.
*
{{Topology
General topology