HOME

TheInfoList



OR:

A catadioptric optical system is one where
refraction In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
and reflection are combined in an optical system, usually via lenses ( dioptrics) and curved mirrors ( catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early
lighthouse A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lens (optics), lenses and to serve as a beacon for navigational aid for maritime pilots at sea or on inland waterways. Ligh ...
focusing systems,
optical telescope An optical telescope gathers and focus (optics), focuses light mainly from the visible spectrum, visible part of the electromagnetic spectrum, to create a magnification, magnified image for direct visual inspection, to make a photograph, or to co ...
s, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as
surveillance Surveillance is the monitoring of behavior, many activities, or information for the purpose of information gathering, influencing, managing, or directing. This can include observation from a distance by means of electronic equipment, such as ...
catadioptric sensors.


Early catadioptric systems

Catadioptric combinations have been used for many early optical systems. In the 1820s, Augustin-Jean Fresnel developed several catadioptric lighthouse reflector versions of his
Fresnel lens A Fresnel lens ( ; ; or ) is a type of composite compact lens (optics), lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. The simpler Dioptrics, d ...
. Léon Foucault developed a catadioptric microscope in 1859 to counteract aberrations of using a lens to image objects at high power. In 1876 a French engineer, A. Mangin, invented what has come to be called the Mangin mirror, a concave glass reflector with the silver surface on the rear side of the glass. The two surfaces of the reflector have different radii to correct the aberration of the spherical mirror. Light passes through the glass twice, making the overall system act like a triplet lens. Mangin mirrors were used in searchlights, where they produced a nearly true parallel beam. Many Catadioptric telescopes use negative lenses with a reflective coating on the backside that are referred to as “Mangin mirrors”, although they are not single-element objectives like the original Mangin, and some even predate Mangin's invention.- Vladimir Sacek, telescope-optics.net, Notes on AMATEUR TELESCOPE OPTICS, CATADIOPTRIC TELESCOPES, 10.2.1
/ref>


Catadioptric telescopes

Catadioptric telescopes are optical telescopes that combine specifically shaped mirrors and lenses to form an image. This is usually done so that the telescope can have an overall greater degree of error correction than their all-lens or all-mirror counterparts, with a consequently wider aberration-free
field of view The field of view (FOV) is the angle, angular extent of the observable world that is visual perception, seen at any given moment. In the case of optical instruments or sensors, it is a solid angle through which a detector is sensitive to elec ...
. Their designs can have simple all-spherical surfaces and can take advantage of a folded optical path that reduces the mass of the telescope, making them easier to manufacture. Many types employ “correctors”, a lens or curved mirror in a combined image-forming optical system so that the reflective or refractive element can correct the aberrations produced by its counterpart.


Catadioptric dialytes

Catadioptric dialytes are the earliest type of catadioptric telescope. They consist of a single-element
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens (optics), lens as its objective (optics), objective to form an image (also referred to a dioptrics, dioptric telescope). The refracting telescope d ...
objective combined with a silver-backed negative lens (similar to a Mangin mirror). The first of these was the Hamiltonian telescope patented by W. F. Hamilton in 1814. The Schupmann medial telescope designed by German optician Ludwig Schupmann near the end of the 19th century placed the catadioptric mirror beyond the focus of the refractor primary and added a third correcting/focusing lens to the system.


Full-aperture correctors

There are several telescope designs that take advantage of placing one or more full-diameter lenses (commonly called a "''corrector plate''") in front of a spherical primary mirror. These designs take advantage of all the surfaces being "spherically symmetrical" and were originally invented as modifications of mirror based optical systems (
reflecting telescope A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternati ...
s) to allow them to have an image plane relatively free of
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to Nociception, respond normally to Pain, painful stimuli, light, or sound, lacks a normal Circadian rhythm, sleep-wake cycle and does not initiate ...
or astigmatism so they could be used as
astrograph An astrograph (or astrographic camera) is a telescope designed for the sole purpose of astrophotography. Astrographs are mostly used in wide-field astronomical surveys of the sky and for detection of objects such as asteroids, meteors, an ...
ic cameras. They work by combining a spherical mirror's ability to reflect light back to the same point with a large lens at the front of the system (a corrector) that slightly bends the incoming light, allowing the spherical mirror to image objects at
infinity Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophic ...
. Some of these designs have been adapted to create compact, long-focal-length catadioptric cassegrains.


Schmidt corrector plate

The Schmidt corrector, the first full-diameter corrector plate, was used in Bernhard Schmidt's 1931 Schmidt camera. The Schmidt camera is a wide-field photographic telescope, with the corrector plate at the center of curvature of the primary mirror, producing an image at a focus inside the tube assembly at the prime focus where a curved film plate or detector is mounted. The relatively thin and lightweight corrector allows Schmidt cameras to be constructed in diameters up to 1.3 m. The corrector's complex shape takes several processes to make, starting with a flat piece of optical glass, placing a vacuum on one side of it to curve the whole piece, then grinding and polishing the other side flat to achieve the exact shape required to correct the spherical aberration caused by the primary mirror. The design has lent itself to many Schmidt variants. ;Popular sub-types * Schmidt–Cassegrain telescopes are one of the most popular commercial designs on the amateur astronomical market, having been mass-produced since the 1960s. The design replaces the Schmidt Camera film holder with a Cassegrain secondary mirror, making a folded optical path with a long focal length and a narrow field of view.


Meniscus corrector shell

The idea of replacing the complicated Schmidt corrector plate with an easy-to-manufacture full-aperture spherical meniscus lens (a meniscus corrector shell) to create a wide-field telescope occurred to at least four optical designers in early 1940s war-torn Europe, including Albert Bouwers (1940),
Dmitri Dmitrievich Maksutov Dmitry Dmitrievich Maksutov (; – 12 August 1964) was a Soviet Union, Soviet Optical engineering, optical engineer and amateur astronomer. He is best known as the inventor of the Maksutov telescope. Biography Dmitry Dmitriyevich Maksutov was b ...
(1941), K. Penning, and
Dennis Gabor Dennis Gabor ( ; ; 5 June 1900 – 9 February 1979) was a Hungarian-British physicist who received the Nobel Prize in Physics in 1971 for his invention of holography. He obtained British citizenship in 1946 and spent most of his life in Engla ...
(1941). Wartime secrecy kept these inventors from knowing about each other's designs, leading to each being an independent invention. Albert Bouwers built a prototype meniscus telescope in August 1940 and patented it in February 1941. It used a spherically concentric meniscus and was only suitable as a monochromatic astronomical camera. In a later design he added a cemented doublet to correct chromatic aberration. Dmitri Maksutov built a prototype for a similar type of meniscus telescope, the Maksutov telescope, in October 1941 and patented it in November of that same year. His design corrected spherical and chromatic aberrations by placing a weak negative-shaped meniscus corrector closer to the primary mirror. ;Popular sub-types * Maksutov–Cassegrain telescopes are the most commonly seen design that uses a meniscus corrector, a variant of the Maksutov telescope. It has a silvered "spot" secondary on the corrector, making a long focal length but compact (folded optical path) telescope with a narrow field of view. This design idea appeared in Dmitri Maksutov's 1941 notes and was originally developed in commercial designs by Lawrence Braymer ('' Questar, 1954''), and John Gregory (''1955 patent)''. The combination of the corrector with the silvered secondary spot makes Maksutov–Cassegrains low-maintenance and ruggedized since they can be air-sealed and fixed in alignment ( collimation).


Houghton corrector lens

The Houghton telescope or Lurie–Houghton telescope is a design that uses a wide compound positive-negative lens over the entire front aperture to correct spherical aberration of the main mirror. If desired, the two corrector elements can be made with the same type of glass, since the Houghton corrector's chromatic aberration is minimal. The corrector is thicker than a Schmidt-Cassegrain's front corrector, but much thinner than a Maksutov meniscus corrector. All the lens surfaces and the mirror's surface are spheroidal, greatly easing amateur construction.


Sub-aperture correctors

In sub-aperture corrector designs, the corrector elements are usually at the focus of a much larger objective. These elements can be both lenses and mirrors, but since multiple surfaces are involved, achieving good aberration correction in these systems can be very complex. Examples of sub-aperture corrector catadioptric telescopes include the Argunov–Cassegrain telescope, the Klevtsov–Cassegrain telescope and sub-aperture corrector Maksutovs, which use as a " secondary mirror" an optical group consisting of lens elements and sometimes mirrors designed to correct aberration, as well as Jones-Bird Newtonian telescopes, which use a spherical primary mirror combined with a small corrector lens mounted near the focus.


Photographic catadioptric lenses

Various types of catadioptric systems are also used in
camera lens A camera lens, photographic lens or photographic objective is an optical lens (optics), lens or assembly of lenses (compound lens) used in conjunction with a camera body and mechanism to Imaging, make images of objects either on photographic film ...
es known alternatively as ''catadioptric lenses'' (''CATs''), ''reflex lenses'', or ''mirror lenses''. These lenses use some form of the cassegrain design which greatly reduces the physical length of the optical assembly, partly by folding the optical path, but mostly through the telephoto effect of the convex secondary mirror which multiplies the focal length many times (up to 4 to 5 times). This creates lenses with focal lengths from 250 mm up to and beyond 1000 mm that are much shorter and compact than their long-focus or telephoto counterparts. Moreover, chromatic aberration, a major problem with long refractive lenses, and off-axis aberration, a major problem with reflective telescopes, is almost completely eliminated by the catadioptric system, making the image they produce suitable to fill the large focal plane of a camera. Catadioptric lenses do, however, have several drawbacks. The fact that they have a central obstruction means they cannot use an adjustable diaphragm to control light transmission.R. E. Jacobson, Sidney F. Ray ''The manual of photography'', page 95
/ref> This means the lens's F-number value is fixed to the overall designed focal ratio of the optical system (the diameter of the primary mirror divided into the focal length). The inability to stop down the lens results in the catadioptric lens having a short depth of field. Exposure is usually adjusted by the placement of neutral density filters on the front or rear of the lens. Their modulation transfer function shows low contrast at low spatial frequencies. Finally, their most salient characteristic is the annular shape of defocused areas of the image, giving a doughnut-shaped 'iris blur' or bokeh, caused by the shape of the entrance pupil. Several companies made catadioptric lenses throughout the later part of the 20th century.
Nikon (, ; ) is a Japanese optics and photographic equipment manufacturer. Nikon's products include cameras, camera lenses, binoculars, microscopes, ophthalmic lenses, measurement instruments, rifle scopes, spotting scopes, and equipment related to S ...
(under the Mirror- Nikkor and later Reflex- Nikkor names) and Canon both offered several designs, such as 500 mm 1:8 and 1000 mm 1:11. Smaller companies such as Tamron, Samyang, Vivitar, and Opteka also offered several versions, with the three latter of these brands still actively producing a number of catadioptric lenses for use in modern system cameras. Minolta (later Sony) offered a 500 mm catadioptric lens for their Alpha range of cameras. The Minolta lens had the distinction of being the only reflex lens manufactured by a major brand to feature auto-focus.


Gallery of catadioptric lenses

File:500mmMirrorLens.jpg, 500 mm catadioptric lens mounted on a
Yashica was a Japanese manufacturer of cameras, lenses, and film editing equipment active from 1949 until 2005 when its then-owner, Kyocera, ceased production. It acquired the lens manufacturer Tomioka (Tomioka Optical Co., Ltd). In 2008, the Yashica ...
FX-3 File:Sony Alpha 55 with Minolta 500 F8 Reflex.JPG, Minolta AF 500 mm F/8 catadioptric lens mounted on a Sony Alpha 55 camera File:2015 Obiektyw lustrzany MC MTO-11CA (01).jpg, Maksutov MC MTO-11CA File:Walimex 9392.jpg, Samyang 500mm f/8 File:Nikon 500mm reflex lens.jpg, Nikon 500mm f/8 reflex lens


See also

*
Astrograph An astrograph (or astrographic camera) is a telescope designed for the sole purpose of astrophotography. Astrographs are mostly used in wide-field astronomical surveys of the sky and for detection of objects such as asteroids, meteors, an ...
* Schmidt–Cassegrain telescope * Catoptrics * Dioptrics * Image-forming optical system * List of telescope types * Ludwig Schupmann


References


External links


telescope-optics.net, CATADIOPTRIC TELESCOPES

Learning to love your Mirror Lens
- from olympuszuiko.com {{DEFAULTSORT:Catadioptric System Optical telescopes Photographic lens designs Telescope types