HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
descriptive set theory In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" set (mathematics), subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has a ...
, a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of a
Polish space In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that h ...
has the perfect set property if it is either
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
or has a
nonempty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whi ...
perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a
perfect set In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set S is perfect if S=S', where S' denotes the set of all limit points of S, also known as the derived set of S. (Some ...
. As nonempty perfect sets in a Polish space always have the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
, and the reals form a Polish space, a set of reals with the perfect set property cannot be a
counterexample A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "student John Smith is not lazy" is a c ...
to the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
, stated in the form that every
uncountable set In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger t ...
of reals has the cardinality of the continuum. The Cantor–Bendixson theorem states that
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
s of a Polish space ''X'' have the perfect set property in a particularly strong form: any closed subset of ''X'' can be written uniquely as the
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
. As a consequence, if a subset S \subset X of a Polish space X is such that its derived sets eventually reach the empty set, that is, S^ = \emptyset for some ordinal \alpha, then S is countable. The
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
implies the existence of sets of reals that do not have the perfect set property, such as Bernstein sets. However, in
Solovay's model In the mathematical field of set theory, the Solovay model is a model constructed by in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue meas ...
, which satisfies all axioms of ZF but not the axiom of choice, every set of reals has the perfect set property, so the use of the axiom of choice is necessary. Every
analytic set In the mathematical field of descriptive set theory, a subset of a Polish space X is an analytic set if it is a continuous image of a Polish space. These sets were first defined by and his student . Definition There are several equivalent ...
has the perfect set property. It follows from the existence of sufficiently
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
s that every
projective set In the mathematical field of descriptive set theory, a subset A of a Polish space X is projective if it is \boldsymbol^1_n for some positive integer n. Here A is * \boldsymbol^1_1 if A is analytic * \boldsymbol^1_n if the complement of A, X\se ...
has the perfect set property.


Generalizations

Let \omega_1 be the least uncountable ordinal. In an analog of
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
derived from the \omega_1-fold
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of \omega_1 with itself, any closed set is the disjoint union of an \omega_1-perfect set and a set of
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
\leq\aleph_1, where \omega_1-closedness of a set is defined via a
topological game In mathematics, a topological game is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is g ...
in which members of \omega_1^ are played.J. Väänänen,
A Cantor-Bendixson theorem for the space \omega_1^
. Fundamenta Mathematicae vol. 137, iss. 3, pp.187--199 (1991).


References

*


Citations

{{reflist Descriptive set theory