HOME

TheInfoList



OR:

In mathematics, when the elements of some set S have a notion of equivalence (formalized as an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class
if, and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a
group operation In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. Thes ...
or a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Examples include quotient spaces in linear algebra, quotient spaces in topology,
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For exam ...
s,
homogeneous space In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ...
s,
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. I ...
s, quotient monoids, and quotient categories.


Examples

* If X is the set of all cars, and \,\sim\, is the
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
"has the same color as", then one particular equivalence class would consist of all green cars, and X / \sim could be naturally identified with the set of all car colors. * Let X be the set of all rectangles in a plane, and \,\sim\, the equivalence relation "has the same area as", then for each positive real number A, there will be an equivalence class of all the rectangles that have area A. * Consider the
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is t ...
2 equivalence relation on the set of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s, \Z, such that x \sim y if and only if their difference x - y is an
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 4 ...
. This relation gives rise to exactly two equivalence classes: one class consists of all even numbers, and the other class consists of all odd numbers. Using square brackets around one member of the class to denote an equivalence class under this relation, and /math> all represent the same element of \Z / \sim. * Let X be the set of
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In co ...
s of integers (a, b) with non-zero b, and define an equivalence relation \,\sim\, on X such that (a, b) \sim (c, d) if and only if a d = b c, then the equivalence class of the pair (a, b) can be identified with the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
a / b, and this equivalence relation and its equivalence classes can be used to give a formal definition of the set of rational numbers. The same construction can be generalized to the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of any
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
. * If X consists of all the lines in, say, the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
, and L \sim M means that L and M are
parallel lines In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. '' Parallel curves'' are curves that do not touch each other or inter ...
, then the set of lines that are parallel to each other form an equivalence class, as long as a line is considered parallel to itself. In this situation, each equivalence class determines a
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. A ...
.


Definition and notation

An
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
on a set X is a
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
\,\sim\, on X satisfying the three properties: * a \sim a for all a \in X ( reflexivity), * a \sim b implies b \sim a for all a, b \in X ( symmetry), * if a \sim b and b \sim c then a \sim c for all a, b, c \in X ( transitivity). The equivalence class of an element a is often denoted /math> or , and is defined as the set \ of elements that are related to a by \,\sim. The word "class" in the term "equivalence class" may generally be considered as a synonym of " set", although some equivalence classes are not sets but
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es. For example, "being isomorphic" is an equivalence relation on
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, and the equivalence classes, called
isomorphism class In mathematics, an isomorphism class is a collection of mathematical objects isomorphic to each other. Isomorphism classes are often defined as the exact identity of the elements of the set is considered irrelevant, and the properties of the st ...
es, are not sets. The set of all equivalence classes in X with respect to an equivalence relation R is denoted as X / R, and is called X
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is t ...
R (or the of X by R). The
surjective map In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
x \mapsto /math> from X onto X / R, which maps each element to its equivalence class, is called the , or the canonical projection. Every element of an equivalence class characterizes the class, and may be used to ''represent'' it. When such an element is chosen, it is called a representative of the class. The choice of a representative in each class defines an
injection Injection or injected may refer to: Science and technology * Injective function, a mathematical function mapping distinct arguments to distinct values * Injection (medicine), insertion of liquid into the body with a syringe * Injection, in broadca ...
from X / R to . Since its
composition Composition or Compositions may refer to: Arts and literature * Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
with the canonical surjection is the identity of X / R, such an injection is called a
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sign ...
, when using the terminology of category theory. Sometimes, there is a section that is more "natural" than the other ones. In this case, the representatives are called . For example, in
modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his bo ...
, for every
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
greater than , the congruence modulo is an equivalence relation on the integers, for which two integers and are equivalent—in this case, one says ''congruent'' —if divides a-b; this is denoted a\equiv b \pmod m. Each class contains a unique non-negative integer smaller than m, and these integers are the canonical representatives. The use of representatives for representing classes allows avoiding to consider explicitly classes as sets. In this case, the canonical surjection that maps an element to its class is replaced by the function that maps an element to the representative of its class. In the preceding example, this function is denoted a \bmod m, and produces the remainder of the
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
of by .


Properties

Every element x of X is a member of the equivalence class Every two equivalence classes /math> and /math> are either equal or
disjoint Disjoint may refer to: *Disjoint sets, sets with no common elements *Mutual exclusivity, the impossibility of a pair of propositions both being true See also *Disjoint union *Disjoint-set data structure {{disambig