Cadmium-116
   HOME

TheInfoList



OR:

Naturally occurring
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
(48Cd) is composed of 8
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s. For two of them, natural
radioactivity Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long
half-lives Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * '' Half Life: A Parable for t ...
. The two natural radioactive isotopes are 113Cd (
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move cl ...
, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd (
double electron capture Double electron capture is a decay mode of an atomic nucleus. For a nuclide (''A'', ''Z'') with a number of nucleons ''A'' and atomic number ''Z'', double electron capture is only possible if the mass of the nuclide (''A'', ''Z''−2) is lower. I ...
), and 114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd, 111Cd, and 112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known
meta state A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have half-lives of 10−9 s ...
s, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours). The known isotopes of cadmium range in
atomic mass Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
from 94.950  u (95Cd) to 131.946 u (132Cd). The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
before the second most abundant stable isotope, 112Cd, is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
and the primary modes after are beta emission and electron capture. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
before 112Cd is element 47 (
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
) and the primary product after is element 49 (
indium Indium is a chemical element; it has Symbol (chemistry), symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are la ...
). A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.


List of isotopes

, -id=Cadmium-94 , 94Cd , style="text-align:right" , 48 , style="text-align:right" , 46 , 93.95659(54)# , 80# ms
760 ns, , , 0+ , , , -id=Cadmium-95 , rowspan=2, 95Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 47 , rowspan=2, 94.94948(61)# , rowspan=2, 32(3) ms , β+ (95.4%) , 95Ag , rowspan=2, 9/2+# , rowspan=2, , rowspan=2, , - , β+, p (4.6%) , 94Pd , -id=Cadmium-96 , rowspan=2, 96Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 48 , rowspan=2, 95.94034(44)# , rowspan=2, 1.003(47) s , β+ (98.4%) , 96Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (1.6%) , 95Pd , -id=Cadmium-96m1 , rowspan=2 style="text-indent:1em" , 96m1Cd , rowspan=2 colspan="3" style="text-indent:2em" , 6000(1400) keV , rowspan=2, 511(26) ms , β+ (84.6%) , 96Ag , rowspan=2, 16+ , rowspan=2, , rowspan=2, , - , β+, p (15.4%) , 95Pd , -id=Cadmium-96m2 , style="text-indent:1em" , 96m2Cd , colspan="3" style="text-indent:2em" , 5605(5) keV , 198(18) ns , IT , 96Cd , (12−,13−) , , , -id=Cadmium-97 , rowspan=2, 97Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 49 , rowspan=2, 96.93480(45) , rowspan=2, 1.16(5) s , β+ (92.6%) , 97Ag , rowspan=2, (9/2+) , rowspan=2, , rowspan=2, , - , β+, p (7.4%) , 96Pd , -id=Cadmium-97m1 , style="text-indent:1em" , 97m1Cd , colspan="3" style="text-indent:2em" , 1245.1(2) keV , 730(70) μs , IT , 97Cd , (1/2−) , , , -id=Cadmium-97m2 , rowspan=2 style="text-indent:1em" , 97m2Cd , rowspan=2 colspan="3" style="text-indent:2em" , 2620(580) keV , rowspan=2, 3.86(6) s , β+ (74.9%) , 97Ag , rowspan=2, (25/2+) , rowspan=2, , rowspan=2, , - , β+, p (25.1%) , 96Pd , -id=Cadmium-98 , rowspan=2, 98Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 50 , rowspan=2, 97.927389(56) , rowspan=2, 9.29(10) s , β+ (>99.97%) , 98Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (<0.029%) , 97Pd , -id=Cadmium-98m1 , style="text-indent:1em" , 98m1Cd , colspan="3" style="text-indent:2em" , 2428.3(4) keV , 154(16) ns , IT , 98Cd , (8+) , , , -id=Cadmium-98m2 , style="text-indent:1em" , 98m2Cd , colspan="3" style="text-indent:2em" , 6635(2) keV , 224(5) ns , IT , 98Cd , (12+) , , , -id=Cadmium-99 , rowspan=3, 99Cd , rowspan=3 style="text-align:right" , 48 , rowspan=3 style="text-align:right" , 51 , rowspan=3, 98.9249258(17) , rowspan=3, 17(1) s , β+ (99.79%) , 99Ag , rowspan=3, 5/2+# , rowspan=3, , rowspan=3, , - , β+, p (0.21%) , 98Pd , - , β+, α (<10−4%) , 95Rh , -id=Cadmium-100 , 100Cd , style="text-align:right" , 48 , style="text-align:right" , 52 , 99.9203488(18) , 49.1(5) s , β+ , 100Ag , 0+ , , , -id=Cadmium-101 , 101Cd , style="text-align:right" , 48 , style="text-align:right" , 53 , 100.9185862(16) , 1.36(5) min , β+ , 101Ag , 5/2+ , , , -id=Cadmium-102 , 102Cd , style="text-align:right" , 48 , style="text-align:right" , 54 , 101.9144818(18) , 5.5(5) min , β+ , 102Ag , 0+ , , , -id=Cadmium-103 , 103Cd , style="text-align:right" , 48 , style="text-align:right" , 55 , 102.9134169(19) , 7.3(1) min , β+ , 103Ag , 5/2+ , , , -id=Cadmium-104 , 104Cd , style="text-align:right" , 48 , style="text-align:right" , 56 , 103.9098562(18) , 57.7(10) min , β+ , 104Ag , 0+ , , , -id=Cadmium-105 , 105Cd , style="text-align:right" , 48 , style="text-align:right" , 57 , 104.9094639(15) , 55.5(4) min , β+ , 105Ag , 5/2+ , , , -id=Cadmium-105m , style="text-indent:1em" , 105mCd , colspan="3" style="text-indent:2em" , 2517.6(5) keV , 4.5(5) μs , IT , 105Cd , (21/2+) , , , -id=Cadmium-106 , 106Cd , style="text-align:right" , 48 , style="text-align:right" , 58 , 105.9064598(12) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to decay by β+β+ to 106Pd with a half-life over 1.1×1021 years , 0+ , 0.01245(22) , , -id=Cadmium-107 , 107Cd , style="text-align:right" , 48 , style="text-align:right" , 59 , 106.9066120(18) , 6.50(2) h , β+ , 107Ag , 5/2+ , , , -id=Cadmium-108 , 108Cd , style="text-align:right" , 48 , style="text-align:right" , 60 , 107.9041836(12) , colspan=3 align=center, Observationally StableBelieved to decay by β+β+ to 108Pd with a half-life over 4.1×1017 years , 0+ , 0.00888(11) , , -id=Cadmium-109 , 109Cd , style="text-align:right" , 48 , style="text-align:right" , 61 , 108.9049867(16) , 461.3(5) d , EC , 109Ag , 5/2+ , , , -id=Cadmium-109m1 , style="text-indent:1em" , 109m1Cd , colspan="3" style="text-indent:2em" , 59.60(7) keV , 11.8(16) μs , IT , 109Cd , 1/2+ , , , -id=Cadmium-109m2 , style="text-indent:1em" , 109m2Cd , colspan="3" style="text-indent:2em" , 463.10(11) keV , 10.6(4) μs , IT , 109Cd , 11/2− , , , -id=Cadmium-110 , 110Cd , style="text-align:right" , 48 , style="text-align:right" , 62 , 109.90300747(41) , colspan=3 align=center, Stable , 0+ , 0.12470(61) , , -id=Cadmium-111 , 111Cd
Fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, style="text-align:right" , 48 , style="text-align:right" , 63 , 110.90418378(38) , colspan=3 align=center, Stable , 1/2+ , 0.12795(12) , , -id=Cadmium-111m , style="text-indent:1em" , 111mCd , colspan="3" style="text-indent:2em" , 396.214(21) keV , 48.50(9) min , IT , 111Cd , 11/2− , , , -id=Cadmium-112 , 112Cd , style="text-align:right" , 48 , style="text-align:right" , 64 , 111.90276390(27) , colspan=3 align=center, Stable , 0+ , 0.24109(7) , , -id=Cadmium-113 , 113Cd Primordial
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
, style="text-align:right" , 48 , style="text-align:right" , 65 , 112.90440811(26) , 8.04(5)×1015 y , β , 113In , 1/2+ , 0.12227(7) , , - , rowspan=2 style="text-indent:1em" , 113mCd , rowspan=2 colspan="3" style="text-indent:2em" , 263.54(3) keV , rowspan=2, 13.89(11) y , β (99.90%) , 113In , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , IT (0.0964%) , ''113Cd'' , -id=Cadmium-114 , 114Cd , style="text-align:right" , 48 , style="text-align:right" , 66 , 113.90336500(30) , colspan=3 align=center, Observationally StableBelieved to undergo ββ decay to 114Sn with a half-life over 9.2×1016 years , 0+ , 0.28754(81) , , -id=Cadmium-115 , 115Cd , style="text-align:right" , 48 , style="text-align:right" , 67 , 114.90543743(70) , 53.46(5) h , β , 115mIn , 1/2+ , , , -id=Cadmium-115m , style="text-indent:1em" , 115mCd , colspan="3" style="text-indent:2em" , 181.0(5) keV , 44.56(24) d , β , 115mIn , 11/2− , , , -id=Cadmium-116 , 116Cd , style="text-align:right" , 48 , style="text-align:right" , 68 , 115.90476323(17) , 2.69(9)×1019 y , ββ , 116Sn , 0+ , 0.07512(54) , , -id=Cadmium-117 , 117Cd , style="text-align:right" , 48 , style="text-align:right" , 69 , 116.9072260(11) , 2.503(5) h , β , 117In , 1/2+ , , , -id=Cadmium-117m , style="text-indent:1em" , 117mCd , colspan="3" style="text-indent:2em" , 136.4(2) keV , 3.441(9) h , β , 117In , 11/2− , , , -id=Cadmium-118 , 118Cd , style="text-align:right" , 48 , style="text-align:right" , 70 , 117.906922(21) , 50.3(2) min , β , 118In , 0+ , , , -id=Cadmium-119 , 119Cd , style="text-align:right" , 48 , style="text-align:right" , 71 , 118.909847(40) , 2.69(2) min , β , 119In , 1/2+ , , , -id=Cadmium-119m , style="text-indent:1em" , 119mCd , colspan="3" style="text-indent:2em" , 146.54(11) keV , 2.20(2) min , β , 119In , 11/2− , , , -id=Cadmium-120 , 120Cd , style="text-align:right" , 48 , style="text-align:right" , 72 , 119.9098681(40) , 50.80(21) s , β , 120In , 0+ , , , -id=Cadmium-121 , 121Cd , style="text-align:right" , 48 , style="text-align:right" , 73 , 120.9129637(21) , 13.5(3) s , β , 121In , 3/2+ , , , -id=Cadmium-121m , style="text-indent:1em" , 121mCd , colspan="3" style="text-indent:2em" , 214.86(15) keV , 8.3(8) s , β , 121In , 11/2− , , , -id=Cadmium-122 , 122Cd , style="text-align:right" , 48 , style="text-align:right" , 74 , 121.9134591(25) , 5.98(10) s , β , 122In , 0+ , , , -id=Cadmium-123 , 123Cd , style="text-align:right" , 48 , style="text-align:right" , 75 , 122.9168925(29) , 2.10(2) s , β , 123In , 3/2+ , , , -id=Cadmium-123m , rowspan=2 style="text-indent:1em" , 123mCd , rowspan=2 colspan="3" style="text-indent:2em" , 143(4) keV , rowspan=2, 1.82(3) s , β (?%) , 123In , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , IT (?%) , 123Cd , -id=Cadmium-124 , 124Cd , style="text-align:right" , 48 , style="text-align:right" , 76 , 123.9176598(28) , 1.25(2) s , β , 124In , 0+ , , , -id=Cadmium-125 , 125Cd , style="text-align:right" , 48 , style="text-align:right" , 77 , 124.9212576(31) , 680(40) ms , β , 125In , 3/2+ , , , -id=Cadmium-125m1 , style="text-indent:1em" , 125m1Cd , colspan="3" style="text-indent:2em" , 186(4) keV , 480(30) ms , β , 125In , 11/2− , , , -id=Cadmium-125m2 , style="text-indent:1em" , 125m2Cd , colspan="3" style="text-indent:2em" , 1648(4) keV , 19(3) μs , IT , 125Cd , (19/2+) , , , -id=Cadmium-126 , 126Cd , style="text-align:right" , 48 , style="text-align:right" , 78 , 125.9224303(25) , 512(5) ms , β , 126In , 0+ , , , -id=Cadmium-127 , 127Cd , style="text-align:right" , 48 , style="text-align:right" , 79 , 126.9262033(67) , 480(100) ms , β , 127In , 3/2+ , , , -id=Cadmium-127m1 , style="text-indent:1em" , 127m1Cd , colspan="3" style="text-indent:2em" , 285(8) keV , 360(40) ms , β , 127In , 11/2− , , , -id=Cadmium-127m2 , style="text-indent:1em" , 127m2Cd , colspan="3" style="text-indent:2em" , 1845(8) keV , 17.5(3) μs , IT , 127Cd , (19/2+) , , , -id=Cadmium-128 , 128Cd , style="text-align:right" , 48 , style="text-align:right" , 80 , 127.9278168(69) , 246(2) ms , β , 128In , 0+ , , , -id=Cadmium-128m1 , style="text-indent:1em" , 128m1Cd , colspan="3" style="text-indent:2em" , 1870.5(3) keV , 270(7) ns , IT , 128Cd , (5−) , , , -id=Cadmium-128m2 , style="text-indent:1em" , 128m2Cd , colspan="3" style="text-indent:2em" , 2714.6(4) keV , 3.56(6) μs , IT , 128Cd , (10+) , , , -id=Cadmium-128m2 , style="text-indent:1em" , 128m2Cd , colspan="3" style="text-indent:2em" , 4286.6(15) keV , 6.3(8) ms , IT , 128Cd , (15−) , , , -id=Cadmium-129 , rowspan=2, 129Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 81 , rowspan=2, 128.9322356(57) , rowspan=2, 147(3) ms , β (?%) , 129In , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , β, n (?%) , 128In , -id=Cadmium-129m1 , rowspan=2 style="text-indent:1em" , 129m1Cd , rowspan=2 colspan="3" style="text-indent:2em" , 343(8) keV , rowspan=2, 157(8) ms , β (?%) , 129In , rowspan=2, 3/2+ , rowspan=2, , rowspan=2, , - , β, n (?%) , 128In , -id=Cadmium-129m2 , style="text-indent:1em" , 129m2Cd , colspan="3" style="text-indent:2em" , 2283(8) keV , 3.6(2) ms , IT , 129Cd , (21/2+) , , , -id=Cadmium-130 , rowspan=2, 130Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 82 , rowspan=2, 129.934388(24) , rowspan=2, 126.8(18) ms , β (96.5%) , 130In , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (3.5%) , 129In , -id=Cadmium-130m , style="text-indent:1em" , 130mCd , colspan="3" style="text-indent:2em" , 2129.6(10) keV , 240(16) ns , IT , 130Cd , (8+) , , , -id=Cadmium-131 , rowspan=2, 131Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 83 , rowspan=2, 130.940728(21) , rowspan=2, 98(2) ms , β (96.5%) , 131In , rowspan=2, 7/2−# , rowspan=2, , rowspan=2, , - , β, n (3.5%) , 130In , -id=Cadmium-132 , rowspan=2, 132Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 84 , rowspan=2, 131.945823(64) , rowspan=2, 84(5) ms , β, n (60%) , 131In , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β (40%) , 132In , -id=Cadmium-133 , rowspan=2, 133Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 85 , rowspan=2, 132.95261(22)# , rowspan=2, 61(6) ms , β (?%) , 133In , rowspan=2, 7/2−# , rowspan=2, , rowspan=2, , - , β, n (?%) , 132In , -id=Cadmium-134 , 134Cd , style="text-align:right" , 48 , style="text-align:right" , 86 , 133.95764(32)# , 65(15) ms , β , 134In , 0+ , , *
Hyperdeformation In nuclear physics, hyperdeformation is theoretically predicted states of an atomic nucleus with an extremely elongated shape and a very high angular momentum. Less elongated states, superdeformation, have been well observed, but the experimental ...
is predicted to be found in 107Cd.


Cadmium-113m

Cadmium-113m is a cadmium
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
and
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have Half-life, half-lives of ...
with a half-life of 14.1 years. In a normal
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and stru ...
, it has a very low
fission product yield Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission. Yield can be broken down by: # Individual i ...
, plus its large
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture and engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **A ...
means that most of even the small amount produced is destroyed in the course of the
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
's burnup; thus, this isotope is not a significant contributor to
nuclear waste Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
.
Fast fission Fast fission is fission that occurs when a heavy atom absorbs a high-energy neutron, called a fast neutron, and splits. Most fissionable materials need thermal neutrons, which move more slowly. Fast reactors vs. thermal reactors Fast neutron r ...
or fission of some heavier
actinides The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
will produce 113mCd at higher yields.


See also

Daughter products other than cadmium *
Isotopes of tin Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a " magic number" of protons. In addition, ...
*
Isotopes of indium Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted ag ...
*
Isotopes of silver Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istope ...
* Isotopes of palladium * Isotopes of rhodium


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Authority control Cadmium
Cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...