C-type Star
   HOME

TheInfoList



OR:

A carbon star (C-type star) is typically an
asymptotic giant branch The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
star, a luminous
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
, whose
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
contains more
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
than
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. The two elements combine in the upper layers of the star, forming
carbon monoxide Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "
soot Soot ( ) is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. Soot is considered a hazardous substance with carcinogenic properties. Most broadly, the term includes all the particulate matter produced b ...
y" atmosphere and a strikingly ruby red appearance. There are also some dwarf and
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram, with absolute visual magnitudes between about −3 and −8. The temperatures of supergiant stars range ...
carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them. In most stars (such as the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars. Carbon stars have quite distinctive spectral characteristics, and they were first recognized by their spectra by
Angelo Secchi Angelo Secchi (; 28 June 1818 – 26 February 1878) was an Italians, Italian Priesthood in the Catholic Church, Catholic priest and astronomer from the Regions of Italy, Italian region of Emilia-Romagna, Emilia. He was director of the observato ...
in the 1860s, a pioneering time in astronomical
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
.


Spectra

By definition carbon stars have dominant spectral Swan bands from the molecule C2. Many other carbon compounds may be present at high levels, such as CH, CN (
cyanogen Cyanogen is the chemical compound with the chemical formula, formula . Its structure is . The simplest stable carbon nitride, it is a Transparency and translucency, colorless and highly toxic gas with a pungency, pungent odor. The molecule is a ...
), C3 and SiC2. Carbon is formed in the core and circulated into its upper layers, dramatically changing the layers' composition. In addition to carbon,
S-process The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
elements such as
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
,
technetium Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
, and
zirconium Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
are formed in the shell flashes and are "dredged up" to the surface. When astronomers developed the
spectral classification ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max M ...
of the carbon stars, they had considerable difficulty when trying to correlate the spectra to the stars' effective temperatures. The trouble was with all the atmospheric carbon hiding the absorption lines normally used as temperature indicators for the stars. Carbon stars also show a rich spectrum of molecular lines at millimeter wavelengths and submillimeter wavelengths. In the carbon star CW Leonis more than 50 different circumstellar molecules have been detected. This star is often used to search for new circumstellar molecules.


Secchi

Carbon stars were discovered already in the 1860s when spectral classification pioneer
Angelo Secchi Angelo Secchi (; 28 June 1818 – 26 February 1878) was an Italians, Italian Priesthood in the Catholic Church, Catholic priest and astronomer from the Regions of Italy, Italian region of Emilia-Romagna, Emilia. He was director of the observato ...
erected the Secchi class IV for the carbon stars, which in the late 1890s were reclassified as N class stars.


Harvard

Using this new Harvard classification, the N class was later enhanced by an R class for less deeply red stars sharing the characteristic carbon bands of the spectrum. Later correlation of this R to N scheme with conventional spectra, showed that the R-N sequence approximately run in parallel with c:a G7 to M10 with regards to star temperature.


Morgan–Keenan C system

The later N classes correspond less well to the counterparting M types, because the Harvard classification was only partially based on temperature, but also carbon abundance; so it soon became clear that this kind of carbon star classification was incomplete. Instead a new dual number star class C was erected so to deal with temperature and carbon abundance. Such a spectrum measured for Y Canum Venaticorum, was determined to be C54, where 5 refers to temperature dependent features, and 4 to the strength of the C2 Swan bands in the spectrum. (C54 is very often alternatively written C5,4). This Morgan–Keenan C system classification replaced the older R-N classifications from 1960 to 1993.


The Revised Morgan–Keenan system

The two-dimensional Morgan–Keenan C classification failed to fulfill the creators' expectations: #it failed to correlate to temperature measurements based on infrared, #originally being two-dimensional it was soon enhanced by suffixes, CH, CN, j and other features making it impractical for en-masse analyses of foreign galaxies' carbon star populations, #and it gradually occurred that the old R and N stars actually were two distinct types of carbon stars, having real astrophysical significance. A new revised Morgan–Keenan classification was published in 1993 by Philip Keenan, defining the classes: C-N, C-R and C-H. Later the classes C-J and C-Hd were added. This constitutes the established classification system used today.


Astrophysical mechanisms

Carbon stars can be explained by more than one astrophysical mechanism. ''Classical carbon stars'' are distinguished from ''non-classical'' ones on the grounds of mass, with classical carbon stars being the more massive. In the ''classical carbon stars'', those belonging to the modern spectral types C-R and C-N, the abundance of carbon is thought to be a product of
helium fusion The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. In stars Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
, specifically the
triple-alpha process The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. In stars Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
within a star, which giants reach near the end of their lives in the
asymptotic giant branch The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
(AGB). These fusion products have been brought to the stellar surface by episodes of
convection Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
(the so-called third
dredge-up A dredge-up is any one of several stages in the evolution of some stars. By definition, during a ''dredge-up'', a convection zone extends all the way from the star's surface down to the layers of material that have undergone fusion. Consequently, ...
) after the carbon and other products were made. Normally this kind of AGB carbon star fuses hydrogen in a hydrogen burning shell, but in episodes separated by 104–105 years, the star transforms to burning helium in a shell, while the hydrogen fusion temporarily ceases. In this phase, the star's luminosity rises, and material from the interior of the star (notably carbon) moves up. Since the luminosity rises, the star expands so that the helium fusion ceases, and the hydrogen shell burning restarts. During these ''shell helium flashes'', the mass loss from the star is significant, and after many shell helium flashes, an AGB star is transformed into a hot
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
and its atmosphere becomes material for a
planetary nebula A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
. The ''non-classical'' kinds of carbon stars, belonging to the types C-J and C-H, are believed to be
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
s, where one star is observed to be a giant star (or occasionally a
red dwarf A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
) and the other a
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
. The star presently observed to be a giant star accreted carbon-rich material when it was still a
main-sequence In astronomy, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of star ...
star from its companion (that is, the star that is now the white dwarf) when the latter was still a classical carbon star. That phase of
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
is relatively brief, and most such stars ultimately end up as white dwarfs. These systems are now being observed a comparatively long time after the
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
event, so the extra carbon observed in the present red giant was not produced within that star. This scenario is also accepted as the origin of the barium stars, which are also characterized as having strong spectral features of carbon molecules and of barium (an s-process element). Sometimes the stars whose excess carbon came from this mass transfer are called "extrinsic" carbon stars to distinguish them from the "intrinsic" AGB stars which produce the carbon internally. Many of these extrinsic carbon stars are not luminous or cool enough to have made their own carbon, which was a puzzle until their binary nature was discovered. The enigmatic ''hydrogen deficient carbon stars'' (HdC), belonging to the spectral class C-Hd, seems to have some relation to
R Coronae Borealis variable An R Coronae Borealis variable (abbreviated RCB, R CrB) is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation (a few tenths of a magnitude), and one irregular, unpredictably-sudden fading by 1 to 9 magni ...
s (RCB), but are not variable themselves and lack a certain
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation typical for RCB:s. Only five HdC:s are known, and none is known to be binary, so the relation to the non-classical carbon stars is not known. Other less convincing theories, such as
CNO cycle In astrophysics, the carbon–nitrogen–oxygen (CNO) cycle, sometimes called Bethe–Weizsäcker cycle, after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker, is one of the two known sets of fusion reactions by which stars convert h ...
unbalancing and core helium flash have also been proposed as mechanisms for carbon enrichment in the atmospheres of smaller carbon stars.


Other characteristics

Most classical carbon stars are
variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are ...
s of the
long period variable The descriptive term long-period variable star refers to various groups of cool luminous pulsating variable stars. It is frequently abbreviated to LPV. Types of variation The General Catalogue of Variable Stars does not define a long-period vari ...
types.


Observing carbon stars

Due to the insensitivity of night vision to red and a slow adaption of the red sensitive eye rods to the light of the stars, astronomers making
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
estimates of red
variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are ...
s, especially carbon stars, have to know how to deal with the
Purkinje effect The Purkinje effect or Purkinje phenomenon (; sometimes called the Purkinje shift, often pronounced ) is the tendency for the peak luminance sensitivity of the eye to shift toward the blue end of the color spectrum at low illumination (lighting), ...
in order not to underestimate the magnitude of the observed star.


Generation of interstellar dust

Owing to its low surface
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, as much as half (or more) of the total mass of a carbon star may be lost by way of powerful
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s. The star's remnants, carbon-rich "dust" similar to
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
, therefore become part of the
interstellar dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
. This dust is believed to be a significant factor in providing the
raw materials A raw material, also known as a feedstock, unprocessed material, or primary commodity, is a basic material that is used to produce goods, finished goods, energy, or intermediate materials/Intermediate goods that are feedstock for future finished ...
for the creation of subsequent generations of stars and their planetary systems. The material surrounding a carbon star may blanket it to the extent that the dust absorbs all visible light. Silicon carbide outflow from carbon stars was accreted in the early solar nebula and survived in the matrices of relatively unaltered
chondritic A chondrite is a stony (non-metallic) meteorite that has not been modified by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primiti ...
meteorites. This allows for direct isotopic analysis of the circumstellar environment of 1-3 M carbon stars. Stellar outflow from carbon stars is the source of the majority of presolar silicon carbide found in meteorites.


Other classifications

Other types of carbon stars include: * CCS – Cool Carbon Star * CEMP – Carbon-Enhanced Metal-Poor ** CEMP-no – Carbon-Enhanced Metal-Poor star with no enhancement of elements produced by the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
or
s-process The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
** CEMP-r – Carbon-Enhanced Metal-Poor star with an enhancement of elements produced by
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
** CEMP-s – Carbon-Enhanced Metal-Poor star with an enhancement of elements produced by
s-process The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
** CEMP-r/s – Carbon-Enhanced Metal-Poor star with an enhancement of elements produced by both
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
and
s-process The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
* CGCS – Cool Galactic Carbon Star


Use as standard candles

Classical carbon stars are very luminous, especially in the
near-infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
, so they can be detected in nearby galaxies. Because of the strong absorption features in their spectra, carbon stars are redder in the near-infrared than oxygen-rich stars are, and they can be identified by their photometric colors. While individual carbon stars do not all have the same luminosity, a large sample of carbon stars will have a luminosity
probability density function In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
(PDF) with nearly the same median value, in similar galaxies. So the median value of that function can be used as a
standard candle The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible ...
for the determination of the distance to a galaxy. The shape of the PDF may vary depending upon the average
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
of the AGB stars within a galaxy, so it is important to calibrate this distance indicator using several nearby galaxies for which the distances are known through other means.


See also

*
S-type star An S-type star (or just S star) is a cool giant star with approximately equal quantities of carbon and oxygen in its atmosphere. The class was originally defined in 1922 by Paul Merrill for stars with unusual absorption lines and molecular bands ...
, similar, but not as extreme *
Technetium star A technetium star, or more properly a Tc-rich star, is a star whose stellar spectrum contains absorption lines of the radioactive metal technetium. The most stable isotope of technetium is Tc with a half-life of 4.21 million years: too short a tim ...
, another type of chemically peculiar star * Marc Aaronson, American astronomer and researcher of carbon stars *
La Superba La Superba (Y CVn, Y Canum Venaticorum) is a strikingly red giant star in the constellation Canes Venatici. It is faintly visible to the naked eye, and the red colour is very obvious in binoculars. It is a carbon star and semiregular v ...
, one of the more well known carbon stars * LL Pegasi, which has so much soot in it that it has created a spiral trail of smoke extending light years into space


References


External links

List of known carbon stars with classification explanation
->

Includes HD number; secondary identification for most; position in
right ascension Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the equinox (celestial coordinates), March equinox to the (hour circle of the) point in questio ...
and
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or ...
;
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
;
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
; magnitude range (for
variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are ...
s); period (of variability cycle). {{Authority control Star types