HOME

TheInfoList



OR:

In mathematics, Brown's representability theorem in homotopy theory gives
necessary and sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
s for a
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
''F'' on the
homotopy category In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed be ...
''Hotc'' of pointed connected CW complexes, to the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
Set, to be a
representable functor In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets a ...
. More specifically, we are given :''F'': ''Hotc''op → Set, and there are certain obviously necessary conditions for ''F'' to be of type ''Hom''(—, ''C''), with ''C'' a pointed connected CW-complex that can be deduced from category theory alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient. For technical reasons, the theorem is often stated for functors to the category of pointed sets; in other words the sets are also given a base point.


Brown representability theorem for CW complexes

The representability theorem for CW complexes, due to Edgar H. Brown, is the following. Suppose that: # The functor ''F'' maps coproducts (i.e. wedge sums) in ''Hotc'' to products in ''Set'': F(\vee_\alpha X_\alpha) \cong \prod_\alpha F(X_\alpha), # The functor ''F'' maps homotopy pushouts in ''Hotc'' to weak pullbacks. This is often stated as a Mayer–Vietoris axiom: for any CW complex ''W'' covered by two subcomplexes ''U'' and ''V'', and any elements ''u'' ∈ ''F''(''U''), ''v'' ∈ ''F''(''V'') such that ''u'' and ''v'' restrict to the same element of ''F''(''U'' ∩ ''V''), there is an element ''w'' ∈ ''F''(''W'') restricting to ''u'' and ''v'', respectively. Then ''F'' is representable by some CW complex ''C'', that is to say there is an isomorphism :''F''(''Z'') ≅ ''Hom''''Hotc''(''Z'', ''C'') for any CW complex ''Z'', which is natural in ''Z'' in that for any morphism from ''Z'' to another CW complex ''Y'' the induced maps ''F''(''Y'') → ''F''(''Z'') and ''Hom''''Hot''(''Y'', ''C'') → ''Hom''''Hot''(''Z'', ''C'') are compatible with these isomorphisms. The converse statement also holds: any functor represented by a CW complex satisfies the above two properties. This direction is an immediate consequence of basic category theory, so the deeper and more interesting part of the equivalence is the other implication. The representing object ''C'' above can be shown to depend functorially on ''F'': any
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
from ''F'' to another functor satisfying the conditions of the theorem necessarily induces a map of the representing objects. This is a consequence of
Yoneda's lemma In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewi ...
. Taking ''F''(''X'') to be the
singular cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
group ''H''''i''(''X'',''A'') with coefficients in a given abelian group ''A'', for fixed ''i'' > 0; then the representing space for ''F'' is the
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane space Saunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name ...
''K''(''A'', ''i''). This gives a means of showing the existence of Eilenberg-MacLane spaces.


Variants

Since the homotopy category of CW-complexes is equivalent to the localization of the category of all topological spaces at the
weak homotopy equivalence In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with cla ...
s, the theorem can equivalently be stated for functors on a category defined in this way. However, the theorem is false without the restriction to ''connected'' pointed spaces, and an analogous statement for unpointed spaces is also false. A similar statement does, however, hold for spectra instead of CW complexes. Brown also proved a general categorical version of the representability theorem, which includes both the version for pointed connected CW complexes and the version for spectra. A version of the representability theorem in the case of triangulated categories is due to Amnon Neeman. Together with the preceding remark, it gives a criterion for a (covariant) functor ''F'': ''C'' → ''D'' between triangulated categories satisfying certain technical conditions to have a right
adjoint functor In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
. Namely, if ''C'' and ''D'' are triangulated categories with ''C'' compactly generated and ''F'' a triangulated functor commuting with arbitrary direct sums, then ''F'' is a left adjoint. Neeman has applied this to proving the Grothendieck duality theorem in algebraic geometry.
Jacob Lurie Jacob Alexander Lurie (born December 7, 1977) is an American mathematician who is a professor at the Institute for Advanced Study. Lurie is a 2014 MacArthur Fellow. Life When he was a student in the Science, Mathematics, and Computer Science ...
has proved a version of the Brown representability theorem for the homotopy category of a pointed quasicategory with a compact set of generators which are cogroup objects in the homotopy category. For instance, this applies to the homotopy category of pointed connected CW complexes, as well as to the unbounded
derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
of a Grothendieck abelian category (in view of Lurie's higher-categorical refinement of the derived category).


References

{{Reflist, colwidth=30em Category theory Representable functors Theorems in homotopy theory